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Figure 1: BFM-Zero enables versatile and robust whole-body skills. (A-C) Diverse zero-shot inference
methods. (D) Natural recovery from large perturbation. (E) Few-shot adaptation.
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Abstract

Building Behavioral Foundation Models (BFMs) for humanoid robots has the potential to unify
diverse control tasks under a single, promptable generalist policy. However, existing approaches are
either exclusively deployed on simulated humanoid characters, or specialized to specific tasks such
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as tracking. We propose BFM-Zero, a framework that learns an effective shared latent represen-
tation that embeds motions, goals, and rewards into a common space, enabling a single policy to
be prompted for multiple downstream tasks without retraining. This well-structured latent space
in BFM-Zero enables versatile and robust whole-body skills on a Unitree G1 humanoid in the real
world, via diverse inference methods, including zero-shot motion tracking, goal reaching, and re-
ward inference, and few-shot optimization-based adaptation. Unlike prior on-policy reinforcement
learning (RL) frameworks, BFM-Zero builds upon recent advancements in unsupervised RL and
Forward-Backward (FB) models, which offer an objective-centric, explainable, and smooth latent
representation of whole-body motions. We further extend BFM-Zero with critical reward shap-
ing, domain randomization, and history-dependent asymmetric learning to bridge the sim-to-real
gap. Those key design choices are quantitatively ablated in simulation. A first-of-its-kind model,
BFM-Zero establishes a step toward scalable, promptable behavioral foundation models for whole-
body humanoid control.

1 Introduction

Humanoid robots have the potential to transform numerous aspects of our daily lives, from manufactur-
ing and logistics to healthcare and personal assistance. However, realizing this potential requires robots
to perform a wide range of tasks in dynamic and unstructured environments. Humanoid whole-body
control is a fundamental and challenging problem in robotics, serving as the first step to enable the
humanoids to work safely in human environments [Gu et al., 2025].

In robotics, foundation models have the potential to unify diverse control objectives under a single
policy, allowing robots to adapt to new tasks in a zero-shot1way or with efficient post-training. The
closest approaches to such paradigms are Vision-Language-Action (VLA) models for robotic manipula-
tions [e.g., Ghosh et al., 2024, Intelligence et al., 2025, Kim et al., 2024, Zhong et al., 2025, Team et al.,
2025, Bjorck et al., 2025] that learn from human demonstrations (i.e., behavior cloning). However,
for humanoid whole-body control, there is a fundamental mismatch that limits direct behavior cloning:
unlike manipulation tasks, there are no readily available actuator-level action labels or large-scale tele-
operation datasets.

For whole-body humanoid control, most recent advancements follow the sim-to-real pipeline and rely
on reinforcement learning (RL) to train policies in simulation before transferring them to hardware [Gu
et al., 2025]. Following the success of RL-based motion tracking in physics-based character anima-
tion [e.g., Luo et al., 2024, Tessler et al., 2024, Tirinzoni et al., 2025], recent works [e.g., Zakka et al.,
2025, Seo et al., 2025, Chen et al., 2025, Liao et al., 2025, He et al., 2025a, Cheng et al., 2024, He et al.,
2025b] have shown remarkable results in transferring policies trained in simulation to real robots. How-
ever, most of these approaches rely on on-policy policy gradient methods (e.g., PPO [Schulman et al.,
2017]) with explicit tracking-based rewards and suffer from major limitations. First, they remain task-
specific: most policies are trained to explicitly imitate motion capture clips or solve a single task. Second,
they are non-adaptive: once trained, policies cannot be easily fine-tuned or composed for new tasks.

1Zero-shot means that, after pre-training, the policy can be directly deployed in the real world without further interacting
with either simulated or real environments. In contrast, few-shot means the policy needs to interact with the environment to
collect new data in few episodes to improve on certain tasks.
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Third, they lack a unified and explainable interface for goal specification and behavior composition,
making it difficult for human operators to direct the robot or combine learned skills into new behaviors.

In this work, we investigate whether off-policy unsupervised RL can be a suitable approach to train so-
called Behavioral Foundation Models (BFMs) for whole-body control of a humanoid robot, enabling it to
solve a wide range of downstream tasks specified by rewards, goals, or demonstrations without retrain-
ing. For tasks that require retraining, the BFM should enable efficient post-training. This conjecture
is far from trivial. First, most existing methods with real-world deployment rely on on-policy training
(primarily PPO), and there is little evidence that off-policy learning—commonly used in unsupervised
RL for training multi-task policies—is well suited to this context. Second, no evidence exists that unsu-
pervised RL algorithms can handle the sim-to-real gap and dynamic disturbances robustly, either during
simulation policy training or at real-world inference.

We develop BFM-Zero2, an online off-policy unsupervised RL algorithm that leverages motion capture
data to regularize the process of learning generalist whole-body control policies towards human behav-
iors. We introduce domain randomization to address the sim-to-real gap and train robust policies via
asymmetric history-dependent training, leveraging the privileged information available in simulation.
Additionally, we incorporate auxiliary rewards to ensure that the learned behaviors adhere to the safety
and operational constraints of the physical robot. To the best of our knowledge, the resulting algorithm
allows us to train the first behavioral foundation model for real humanoids that can be prompted for dif-
ferent tasks (e.g., reward optimization, pose reaching, and motion tracking) without retraining (i.e., in
zero-shot). Such a flexible and ready-to-use model, paves the way to fast adaptation, fine-tuning or even
high-level planning. We validate our approach in both simulated environments and on a real Unitree
G1 humanoid (Fig. 1 for examples), demonstrating robust generalization across tasks and conditions,
and showing that even when the zero-shot policy is not satisfactory, we can effectively improve it within
a few episodes of environment interaction. The discussion of related work is available in Section A.

2 BFM-Zero for Humanoid Whole-body Control

In this section, we outline the pipeline for training BFM-Zero in simulation and transferring it to real
humanoids. Unlike for virtual characters [e.g., Peng et al., 2022, Tessler et al., 2023, Tirinzoni et al.,
2025], applying unsupervised RL to real humanoids has not yet been attempted. Our BFM-Zero frame-
work consists of an unsupervised pre-training stage, a zero-shot inference procedure, and possibly a
fast-adaptation post-training stage (as shown in Fig. 2). Section 2.1 provides an overview of unsuper-
vised RL using the forward-backward representation framework adopted by BFM-Zero. Section 2.2
details BFM-Zero pre-training, whose objective is to learn a unified latent representation that embeds
tasks (e.g., target motions, rewards, goals) into a shared space Z ⊆ Rd and a promptable policy that
conditions on this representation to perform diverse behaviors without task-specific retraining. Then,
for downstream tasks during inference (Section 2.2), we embed the task into the latent space and use
the policy to execute the task in a zero-shot manner. We also show that we can efficiently adapt the zero-
shot policy in the latent space Z to improve performance on unseen tasks that are not easily covered by
zero-shot inference via sampling-based optimization.

2Zero comes from its zero-shot inference capability via unsupervised RL and it is a first-of-its-kind model.
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Figure 2: An overview of the BFM-Zero framework. After the pre-training stage, BFM-Zero forms a latent
space that can be used for zero-shot reward optimization, single-frame goal reaching, and tracking. It can also
be adapted in a few-shot fashion to reach more challenging poses.

Problem formulation. We formulate real-world humanoid control as a partially observable Markov
decision process (POMDP) defined by the tuple (S, O,A, P,γ), where S is the full state space, O is the
observation space, A is the action space, P(st+1|st , at) is the transition dynamics, and γ ∈ (0, 1) is the
discount factor. For the 29-degree-of-freedom (DoF) humanoid, the action a ∈ A ⊂ R29 contains the
proportional derivative (PD) controller targets for all DoFs. The privileged information (s ∈ R463)
consists of root height, body pose, body rotation, and linear and angular velocities. The observable
state ot = {qt − q̄, q̇t ,ω

root
t /4, gt} ∈ R64 is defined as joint position qt ∈ R29 normalized w.r.t. the

nominal position q̄, joint velocity q̇t ∈ R29, root angular velocity ωroot
t ∈ R3 and root projected gravity

gt ∈ R3. We denote by ot,H = {ot−H , at−H , . . . , ot} ∈ R93·H+64 the observable history composed by
proprioceptive state and action. All the components of the states (except root height) are normalized
w.r.t. the current facing direction and root position. At pre-trainig, we assume that the agent has access
to a dataset of unlabeled motionsM = {τ}, which contains observation and privileged states trajectories
i.e τ= (o1, s1, . . . , ol(τ), sl(τ)).

2.1 Unsupervised RL with Forward-Backward Representations

During the pretraining phase, BFM-Zero learns a compact representation of the environment by ob-
serving online reward-free interactions in the simulator and leveraging an offline dataset of unlabeled
behaviors, resulting in a model that can be prompted to tackle a wide range of downstream tasks (e.g.,
tracking or reward maximization) in a zero-shot manner. To achieve this, we build on top of the recent
FB-CPR algorithm [Tirinzoni et al., 2025]which combines the Forward-Backward (FB) method for zero-
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shot RL [Touati and Ollivier, 2021] with online training and policy regularization on motion-capture
data. This method falls in the broader category of unsupervised RL based on successor features [e.g.,
Touati and Ollivier, 2021, Touati et al., 2023, Pirotta et al., 2024, Park et al., 2024, Agarwal et al., 2024],
which involves three components: (i) a latent task feature φ : S → Rd that embeds observation s ∈ S
into a d-dimensional vector, (ii) a policy πz : S → A conditioned on a latent vector z ∈ Rd , and (iii)
latent-conditioned successor features [Barreto et al., 2017] Fz that encode the expected discounted sum
of latent task features under the corresponding policy πz , i.e, Fz ≃ E[

∑

t γ
tφ(st) | πz]. We now explain

how FB-CPR trains those components.

FB representations and FB-CPR. Among the different unsupervised RL approaches, forward-backward
(FB) representations provide a principled unsupervised training objective for jointly learning latent task
representations and their associated successor features. At a high level, FB learns a finite-rank approxi-
mation of long-term policy dynamics, where B captures the low-frequency features that best summarize
the long-range temporal dependencies between states. Formally, given a training state distribution ρ,
the FB framework learns two mappings: a forward mapping F : S × A× Rd → Rd and a backward
mapping B : S → Rd such that the long-term transition dynamics induced by the policy πz decompose
as:

Mπz (ds′ | s, a)≃ F(s, a, z)⊤B(s′)ρ(ds′) (2.1)

where for any region X ⊂ S of the state space, Mπz (s′ ∈ X | s, a) :=
∑

t γ
tPr(st ∈ X | s, a,πz) denotes

the discounted visitation probabilities of reaching X under the policy πz , starting from the state-action
pair (s, a). Eq. 2.1 implies that F is the successor features of φ(s) := (Eρ[B(s)B(s)⊤])−1B(s) [Touati
et al., 2023]. The learned representation φ defines a latent task space by inducing a family of linear
reward functions of the form, i.e., rz(s) = φ(s)⊤z, In particular, each policy πz is optimized to maximize
Eρ[
∑

t γ
tφ(st)⊤z | πz] = F(s, a, z)⊤z, i.e., F(s, a, z)⊤z is a Q-value function of πz with reward r = φ⊤z.

Intuitively, z ∈ Z defines a task-centric latent space associated with the task feature φ, where for each
z, the corresponding πz optimizes the linear combination of φ, rz = φ⊤z. As shown in Section 3.4,
the Z space learned by BFM-Zero is smooth and semantic, and it enables both zero-shot inference and
few-shot adaptation. Importantly, in contrast to standard RL approaches, the set of reward functions of
interest {rz} is not given (e.g., motion tracking) but learned, and it can represent a wide range of tasks.
FB-CPR [Tirinzoni et al., 2025] extends the general FB framework by introducing a latent-conditioned
discriminator to regularize the unsupervised learning process to produce policies that are close to a set
of demonstrated behaviors in a motion datasetM . Furthermore, while FB algorithm is offline, FB-CPR
is trained fully online and off-policy and does not require a full-coverage offline dataset.

2.2 BFM-Zero Pre-training for Humanoid Control

Before proceeding with the description of implementation details, we identify several design choices
that are crucial for achieving sim-to-real transfer in unsupervised RL.

A) Asymmetric Training. To bridge the gap between simulation (full state) and real robot (partial observ-
ability), we train the policy on observation history ot,H , while critics have access to privileged informa-
tion (ot,H , st). This setup improves policy robustness under limited sensing while leveraging privileged
critics to provide accurate value estimates. Using history narrows the information gap between propri-
oceptive actors and privileged critics and improves adaptability under domain randomization.
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B) Scaling up to Massively Parallel Environments. Inspired by recent work on large-batch off-policy
RL [Seo et al., 2025], we scale training across thousands of environments with large replay buffers
and high update-to-data (UTD) ratios. This enables efficient unsupervised training of a diverse family
of policies while retaining stability, a crucial step for scaling humanoid pretraining.

C) Domain Randomization (DR). To enhance robustness and adaptability, we randomize key physical
parameters (link masses, friction coefficients, joint offsets, torso center-of-mass) and apply perturbations
and sensor noise. This prevents overfitting to simulation dynamics and ensures that policies remain
stable when deployed on real hardware (see Fig. 11 in Appendix).

D) Reward Regularization. In robotics [e.g., He et al., 2025a, Zakka et al., 2025], it is common to
incorporate reward regularization techniques to avoid undesirable behaviors. For example, reaching
the limit of the joint may lead to highly nonlinear behaviors that are difficult to model in simulation or
even damage the robot’s hardware.

We train BFM-Zero within an off-policy actor-critic scheme. The policy-conditional, history-based, priv-
ileged forward map F and privileged backward map B are trained to minimize the temporal difference
loss derived from the Bellman equation for successor measures [Touati and Ollivier, 2021]. Let D the
replay buffer of online interactions with the simulator and ν is an arbitrary distribution over Z , we
consider the following FB objective:

L (F , B) = E
�

�

F(ot,H , st , at , z)⊤B(o+, s+)− γF(ot+1,H , st+1, at+1, z)⊤B(o+, s+)
�2�

− 2E
�

F(ot,H , st , at , z)⊤B(ot+1, st+1)
�

,

where z ∼ ν, (ot,H , st , at , ot+1,H , st+1) ∼ D, at+1 = π(ot+1,H , z) and (o+, s+) ∼ D. F and B denote the
stop-gradient operator.

The auxiliary history-based, privileged critic QR that imposes safety and physical feasibility constraints
by incorporating Naux penalty rewards is learned with a standard Bellman residual loss:

L (QR) = E (ot,H ,st ,at ,st+1)∼D
z∼ν,at+1=π(ot+1,H ,z)

�

�

QR(ot,H , st , at , z)−
Naux
∑

k=1

rk(st)− γQR(ot+1,H , st+1, at+1, z)
�2
�

.

Finally, we employ the history-based, privileged discriminator critic QD that grounds the unsupervised
training toward human-like behaviors by assigning rewards based on a latent-conditioned discriminator.
This acts both as a style regularization as well as a bias in the online exploration process. As in [Tirinzoni
et al., 2025], we employ a variational representation of the Jensen-Shannon divergence and train the
discriminator D with a GAN-style objective:

L (D) = −Eτ∼M ,(o,s)∼τ [log(D(o, s, zτ))]−E(o,s,z)∼D [log(1− D(o, s, z))] .

where zτ =
1

l(τ)

∑

(o,s)∈τ B(o, s) is a zero-shot imitation embedding of the motion τ. We can then fit a
style critic QD with a Bellman residual loss similar to the auxiliary critic with a reward rd(ot , st , z) =

D(ot ,st ,z)
1−D(ot ,st ,z)

. Bringing together these critiques results in the final actor loss.

L (π) = −E (ot,H ,st )∼D
at=π(ot,H ,z),z∼ν,

�

F(ot,H , st , at , z)
⊤z +λDQD(ot,H , st , at , z) +λRQR(ot,H , st , at , z)

�

.
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Model Test env. Test data Track Rwd Pose

BFM-Zero-priv Isaac (no DR) LAFAN1 1.0749 299.3 1.0291

BFM-Zero Isaac (DR) LAFAN1 1.1015 221.9 1.1387

BFM-Zero Mujoco (DR) LAFAN1 1.0789
207.3

1.1041

BFM-Zero Mujoco (DR) AMASS 1.0342 1.4735

move-ego-0-0

0 100 200 300 400
Reward

move-ego-0-0.3

Figure 3: Tracking, reward, and goal-reaching performance across models for different testing configurations
(left), and example distributions of reward evaluation scores for BFM-Zero in Isaac (DR) (right). Each metric is
averaged over tasks. We consider the average return over episodes lasting 500 steps for reward, the average joint
position error Empjpe averaged over the whole motion for tracking, and the error Empjpe averaged over the episode
for goal-reaching.

Zero-shot inference. At test time, BFM-Zero can be used to solve different tasks in zero-shot fashion,
i.e., without performing additional task-specific learning, planning, or fine-tuning. Given an arbitrary
reward function r(s), the corresponding Q function of πz can be formulated as

Qπz
r (s, a) =

∫

s′
Mπz (ds′|s, a)r(s′)≃ Es′∼ρ[F(s, a, z)⊤B(s′)r(s′)] = F(s, a, z)⊤Es′∼ρ[B(s

′)r(s′)].

Since F(s, a, z)⊤z is the Q function of πz , we have zr = Es′∼ρ[B(s)r(s)]. In practice, we can leverage
a sample-based estimate, given by zr =

1
N

∑

i r(si)B(si) where si ∈ D and D = {(si , ri)} is obtained
by subsampling the online replay buffer. For a goal-reaching task, we have zg = B(sg). Finally, for

tracking a motion τ= {s1, . . . , sn}, a sequence of policies {zt} is obtained as zt =
∑t+H

t ′=t B(st ′), where H
is a look-ahead horizon [Pirotta et al., 2024].

Few-Shot Adaptation. We can leverage optimization techniques for adaptation in latent space Z using
online interaction with the simulator at test time. We demonstrate this by refining a static pose or an en-
tire motion to maximize J(z) =

∑T−1
t=0

�

rtask(st)−αR
∑Naux

k=1 rk(ot , st , at)
�

. For single-pose adaptation, we
use the zero-shot policy z0 = B(sg , og) as initial point and apply the Cross-Entropy Method (CEM) [Ru-
binstein, 1999, Rubinstein and Kroese, 2004]. For trajectory-level adaptation, we warm-start from
a tracked motion sequence and perform zero-order, sampling-based trajectory optimization over a se-
quence of latent prompts, zt:t+H−1, using a dual-loop annealing schedule in the spirit of DIAL-MPC [Xue
et al., 2025]. This procedure consistently stabilizes challenging segments and reduces motion-tracking
error, while retaining the human-like prior given by the discriminator without finetuning networks.

3 Experiments

In this section, we thoroughly evaluate BFM-Zero both in simulation and in real. We train BFM-Zero
in a simulated version of Unitree G1 using IsaacLab [Mittal et al., 2023] at 200 Hz, while the control
frequency is 50 Hz. For the behavior dataset, we use the LAFAN1 dataset [Harvey et al., 2020] retar-
geted to the Unitree G1 robot. The LAFAN1 dataset contains 40 several-minute-long motions. We also
demonstrate generality of BFM-Zero on a Booster T1 humanoid (App. D.2).
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3.1 Zero-shot Validation in Simulation

In this section, we quantitatively assess the performance and robustness of BFM-Zero along different
dimensions in simulation.

Asymmetric learning and domain randomization. We consider a privileged version of BFM-Zero
where all components of the algorithm receive privileged information. We train this model in a simu-
lated environment with nominal dynamical parameters (No DR), and we test it in the very same config-
uration. This serves as an idealized configuration similar to the problems where unsupervised RL was
previously shown to work [Tirinzoni et al., 2025], although it leads to a model that is not deployable on
the real robot. We then compare to BFM-Zero trained and tested on a domain randomized version of
the environment (Sim DR), which corresponds to the model actually deployed on the real robot. Over-
all, BFM-Zero is 2.47%, 25.86%, 10.65% worse than BFM-Zero-priv across tracking, reward, and pose
reaching tasks. This shows that despite the algorithmic changes made in BFM-Zero compared to FB-
CPR, the learning dynamics is still correct and the model retains a satisfactory performance compared to
its idealized version. Interestingly, reward tasks suffer from a larger drop in performance. This is in part
due to the sparse nature of the reward functions we consider, which makes them less forgiving to subop-
timal behaviors and amplify any model error. We also conjecture that this may be related to the reward
inference process with domain randomized data. In Fig. 3 we also show the distribution of the perfor-
mance of BFM-Zero for two representative reward functions across repetitions of the inference process3

and episodes. While for move-ego-0.3 the performance is fairly consistent, for move-ego-0.0, we
notice that a few instances obtained very poor performance. We conjecture that this is related to the
increased randomness of the data observed during training due to domain randomization, which makes
inference with a small subsampled dataset more brittle and prone to failure.

Sim-to-sim performance. We evaluate the robustness of BFM-Zero to the dynamics of the humanoid
by testing it in Mujoco. We notice that performance difference is limited (i.e., all variations are less than
7%), showing that the domain randomization at training and the history components in the actor and
critics contribute to a good level of robustness and adaptivity.

Out-of-distribution tasks. Finally, we evaluate BFM-Zero on a different set of tracking and pose reach-
ing tasks obtained from the AMASS dataset [Mahmood et al., 2019]. We consider 175 out-of-distribution
motions from the CMU subset of the AMASS and 10 manually-selected poses from the motions in the en-
tire AMASS dataset. We run tests in Mujoco to combine different dynamics and out-of-distribution tasks.
While a direct comparison of performance between LAFAN1 and AMASS tasks may be misleading due
to the specific nature of the motions and poses used in the evaluation, we notice that overall BFM-Zero
is able to successfully generalize and complete tracking and pose reaching even when exposed to tasks
that are not represented in the training data.

3.2 Zero-shot Validation on the Real Robot

Finally, we deploy the BFM-Zero model zero-shot on a real Unitree G1 robot. In real-world validation,
we aim to 1) qualitatively confirm the model’s tracking, reward optimization, and goal reaching capa-

3In the reward inference, we use a dataset of states randomly subsampled from the training dataset. As a result, multiple
repetitions of the process may return different policies.
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Natural Recovery from Unexpected Falls

Figure 4: Real-World Validation of Tracking. Left: Highly dynamic dancing. Middle: Frequently turning during
walking. Right: Naturally recover to continue track the motion.

Discontinuous Goal Pose

Real Deploy Trajectory (a) (b)

in the air pose

Figure 5: Real-World Validation of Goal Reaching. (a) Continuously goal-reaching: the blue/yellow pose denotes
the goal pose, while black marks the real robot pose, and gray visualizes the transition between each pose. (b)
Transition from any pose to T-pose.

bilities on a few selected tasks; 2) assess its robustness to perturbations and failures (e.g., falling). All
results in this section come from one model.

Tracking. As shown in Fig. 1 and Fig. 4, BFM-Zero enables the robot to track various motions, including
styled walking motions, highly dynamic dances, fighting and sports. Even when becoming unstable or
during a fall (Right), it demonstrates remarkably gentle, natural, and safe behavior while recovering
and continues tracking seamlessly. This capability stems not merely from robustness gained through
disturbance training, but mostly from TD-based off-policy training and the use of a GAN-based reward
which explicitly encourages human-likeness and regularization terms that enable it to draw upon a rich
skill library—much like a human—to adapt and complete tracking seamlessly. Additionally, to evaluate
the coverage and generalization capability, we used real videos and retargeted them to the G1. Despite
the suboptimal motion quality and discontinuities introduced by occlusions of monocular videos and
artifacts in video estimation, the system is robust to lower quality data and can still successfully track
these motions.

Goal Reaching. For the goal-reaching task, we extract a sequence of target poses by randomly sam-
pling the goal states and discarding their velocity components. The zero-shot latent of these poses are
then permuted and sequentially provided to the policy. As illustrated in Fig. 5, the robot consistently
converges to a natural configuration that closely approximates the target pose, even when the target
is infeasible (the Yellow one in Fig. 5). Moreover, the resulting trajectory exhibits smooth and natural
transitions without the need for explicit interpolation, whether between successive and discontinuous
targets(Fig. 5.a) or from an arbitrary pose to the T-pose(Fig. 5.b), demonstrating the smoothness of the
learned skill space.
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(a)

(b) (c) (d) (e)

~80cm

~60cm

~25cm

on the ground Close in height

base-height = 0/25cm base-height = 60cm & forward right-wirst > 1m wirsts > 1m & backward/sideRewards: 

Figure 6: Real-World Reward Optimization. The red arrow represents the base velocity tracking target.
(a) sitting; (b) crouch-0.25; (c) move-low0.6-ego-0-0.7; (d) Diverse behaviors from one reward
raisearm-m-l; (e) combing raisearm-m-l with move-ego-180-0.3 and move-ego–90-0.7.

(a) (b) (c)

Figure 7: Disturbance Rejection: (a) Keeps steady when kicked in the leg. (b) Absorbs a hard push with one
smooth rear step. (c) Naturally stands up and returns to T-pose after being yanked down.

Reward Optimization. We evaluate reward optimization in the real world with three task families: (i)
locomotion rewards that specify base velocities and angular velocities, (ii) arm-movement rewards that
command wrist height, and (iii) pelvis-height rewards that request sitting, crouching, or low-movement
(Fig. 6(a–c)); reward definitions in Appendix C. With simple reward definitions, the robot faithfully ex-
ecutes base-height, base-velocity, and arm-movement commands. Composite skills can be derived from
simply linear combination of the rewards (e.g. going backward while raising arms), demonstrating con-
trollable skill-level interpolability. Also, given a specific reward, averaging over different mini-batches
from the replay buffer yields a set of latent variables that represents a diverse collection of potential op-
timal modes as shown in Fig. 6(d). Formulating objectives through reward functions makes our policy
intuitive for human users and receptive to language prompts.

Disturbance Rejection. One notable advantage of our policy is its strong compliance and robustness.
As illustrated in Fig. 1 and 7, our framework enables the robot to withstand severe disturbances—such
as fierce pushes, kicks, or even being dragged to the ground, while recovering in a natural, human-like
manner. For example, after a strong forward push, the robot instinctively closes its arms, takes several
rapid steps in a running-like pose, and then slowly slows down before reopening its arms (Fig. 1). This
level of robustness goes beyond the typical demonstrations seen in previous works: rather than fiercely
reacting to the disturbances, our policy autonomously adapts. Although it receives only a single latent z
from the static T-pose as input, it can automatically deviate from the reference posture, adopt a dynamic
recovery pose, and eventually return to tracking the original T-pose just as a human would.

3.3 Efficient Adaptation for BFM-Zero

In this section we show how we leverage adaptation to improve the zero-shot inference performance
under dynamics shift.
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Figure 8: Few-Shot Adaptation: (a) Single-pose adaptation improving single-leg standing under an additional
payload. (b) Trajectory adaptation reduces tracking error.

Single Pose Adaptation. We perform few-shot single-pose adaptation in simulation to learn to stand
on a single leg while carrying a payload. In simulation we increase the weight of the torso link by
4 Kg. Starting from the zero-shot latent zinit, we apply 20 iterations of CEM to obtain z⋆, augmenting
the rollout objective with a sparse task term r = 1{hright foot>0.15 m ∧ no-contact }, which encourages right-
foot clearance while avoiding unintended contacts. We deploy z⋆ on the real robot with a 4 Kg mass
rigidly attached to the torso. As shown in Figure 8 (a), without adaptation, the motion driven by zinit

destabilizes and produces an environmental collision within 5 s. In contrast, the optimized prompt z⋆

maintains single-leg balance for over 15 s. These results indicate that prompt-level optimization alone
can compensate for the payload-induced dynamics shift, without fine-tuning the model parameters.

Trajectory Adaptation. For trajectory adaptation, we focus on optimizing a leaping motion under
altered ground friction. We perform dual-annealing trajectory optimization [Xue et al., 2025] in simu-
lation using the explicit tracking reward defined in [Luo et al., 2023]. We used sampling with particle
count N = 2048, temperature schedules β1 = 0.85 and β2 = 0.9, and optimization iterations M = 6.
The reward curve and before/after adaptation key-point tracking performance is shown in Fig. 8(b),
showing that our method significantly improves tracking accuracy, reducing error by ∼29.1%.

3.4 The Latent Space Structure of BFM-Zero

As mentioned in Sect. 2.1, BFM-Zero provides an interpretable and structured representation of the
behaviors of a humanoid robot. This representation not only facilitates understanding of the policy
space but also enables instantaneous interpolation of existing skills without retraining.

Visualizing the Latent Space. To examine the structure of the latent space, we sample latent vector
trajectories and project them onto a two-dimensional plane (Fig. 9a) to visualize the space, and also use
a three-dimensional sphere to present representative latent generated for tracking, reward optimization
and goal reaching(Fig. 9b) using t-SNE [van der Maaten and Hinton, 2008]. We can see the latent space
is organized by motion style: semantically similar trajectories cluster, revealing a shared task centric
structure.

Motion Interpolation on the Latent Space. The structured nature of Z enables smooth interpolation
between latent representations. We can leverage Spherical Linear Interpolation [Jafari and Molaei,
2014] to generate intermediate latent vectors along the geodesic arc between the two end-points. To
evaluate interpolated behaviors, we feed the resulting in-between zt=0.5 into the BFM-Zero policy, and
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Figure 9: Latent space visualization and analysis.

deploy it on both simulated and real humanoid robots. As shown in Fig. 9c, the interpolated policy
produces semantically meaningful intermediate skills in a zero-shot manner. These behaviors compose
immediately—no additional training required.

4 Discussion

In this paper we showed for the first time that off-policy unsupervised RL is a viable approach to train
a behavioral foundation model for whole-body control of a real humanoid robot. While BFM-Zero
shows a remarkable level of generalization and robustness, it still suffers from several limitations: 1)
The scope and performance of the behaviors expressed by BFM-Zero is connected to the motions used
in training. Investigating the connection between the size of motion datasets, simulated datasets, archi-
tecture and model performance (e.g., quantity and quality of the learned behaviors) and consolidating
it into scaling laws is important to guide future iterations of this approach. 2) While history-based actor
and critics and domain randomization reduced the sim-to-real gap, we believe algorithms with better
online adaptation capabilities are needed to reliably express more complex movements. 3) While we
performed a preliminary investigation of test-time adaptation, a more thorough understanding of fast
adaptation and fine-tuning of these models is needed to broaden their practical applicability.
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A Related Work

In recent years, learning-based methods have made significant progress in whole-body control for hu-
manoid robots. The largest body of work has focused on simulated humanoids. While these methods
have demonstrated impressive capabilities in generating complex and dynamic behaviors using rein-
forcement learning [Peng et al., 2018, Luo et al., 2023, 2024, Tessler et al., 2024], sim-to-real trans-
fer remains a critical challenge in deploying learned policies on real-world humanoid robots. Various
strategies have been proposed to bridge this gap, including domain randomization, system identifica-
tion, asymmetric training, etc. However, the majority of these methods focus on single-task learning,
where a policy is trained to perform a specific task, such as walking, running and get up [Radosavovic
et al., 2024a,b, Chen et al., 2024, Seo et al., 2025, Zakka et al., 2025, He et al., 2025c].

Recently, mostly 2025, there has been a surge of interest in developing multi-task and generalist hu-
manoid control policies that can perform a wide range of tasks [He et al., 2024, 2025a, Zhang et al.,
2025, Zeng et al., 2025, Yin et al., 2025, Chen et al., 2025]. The majority of these methods builds
on top of approaches developed for simulated humanoids, and enhance them to be robust enough for
sim-to-real transfer. While ASAP [He et al., 2025a] pre-train motion tracking policies in simulation and
deploy them on the real robot to collect data to train a delta (residual) action model, the most common
approach is to first train a motion tracking policy (or multiple policies) in simulation, and then distill it
into a single multi-task policy that can perform all the skills in the motion dataset. Common approaches
for distillation include using a conditional variational autoencoder to learn a latent space of skills and
doing online distillation [He et al., 2024, Yin et al., 2025, Zeng et al., 2025, Chen et al., 2025, Zhang
et al., 2025] or using diffusion models [Liao et al., 2025]. However, all these methods require two
stages of training to enable promptable policies, they are inherently limited by the quality of the motion
since the base policies are trained to track the motion, and they relay on on-policy RL algorithms. Our
method represents a significant departure from this paradigm by directly learning a promptable multi-
task policy using an off-policy RL algorithm, which offer a much more reach and structured space of
skills, and is not limited by the quality of the motion dataset.

B Training details

B.1 Training Hyperparameter Settings

The agent interacts with the environment via episodes of fix length T = 500 steps. The algorithm has
access to the dataset M containing observation-only motions. Similarly to [Tirinzoni et al., 2025],
the initial state distribution of an episode is a mixture between randomly generated falling positions
and states inM (motion initialization). We use prioritization to sample motions fromM and, inside a
motion, the state is uniformly sampled. We use an exponential prioritization scheme based on the agent’s
ability to track a motion. To have a more fine-grained prioritization, we split the 40 LAFAN1 [Harvey
et al., 2020] motions into chunks of 10 seconds. Every Neval interaction steps, we evaluate all the
motions and update the priorities base on the earth mover’s distance [Rubner et al., 2000, EMD]. For
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each motion m ∈M , the priority is given by

p(m)∝ 2
max
¦

0.5; min
�

EMD(m),2
	

©

·4

We take inspiration from the recipe in FastTD3 [Seo et al., 2025] to scale up unsupervised off-policy RL
to using massively parallel environments. We use standard MLPs for all the components of the model,
even for handling history. We simulate Nenv parallel (and independent) environments at each step. We
scale the buffer size accordingly to the number of environments, following the rule Nbuffer × Nenv × T .
We use a batch size of Nbatch and we use an update-to-data ratio of Nups gradient steps per (parallel)

environment step. We train the model for a total number of environment steps Ntrain =
NgradNenv

Nups
. We

report the value of these parameters in Tab. 1, the missing parameters are as in [Tirinzoni et al., 2025].

Parameter Value

Environment and Training Setup

History Length H 4
Episode Length T 500
Nenv 1024
Nbatch 1024
Nups 16
Ngrad 3M
Ntrain ≈ 192M
Nbuffer 10
Neval Ntrain/20
Buffer Size (transitions) ≈ 5M
Discount Factor 0.98
Number of Seeding Steps 10 · Nenv

Fall Initialization Probability 0.3

Learning and Regularization

Sequence Length (Trajectory Sampling) 8
Latent Dimension d 256
Discriminator Reg. Coef. αD 0.05
Reward Reg. Coef. αR 0.02
Gradient Penalty 10
Learning Rate F 3 · 10−4

Learning Rate B 10−5

Learning Rate D 10−5

Learning Rate Actor π 3 · 10−4

Learning Rate QD 3 · 10−4

Learning Rate QR 3 · 10−4

Orthonormality Loss Coefficient 100

Inference

Number of samples for reward inference 400000
Tracking look ahead in sim Seq. length
Tracking look ahead in real 3 (real)

Table 1: Training settings.
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B.2 Network Architectures

We use a residual architecture for the actor and the critics with blocks akin to those of transformer archi-
tectures [Vaswani et al., 2017], involving residual connections, layer normalization, and Mish activation
functions [Misra, 2020]. We use an ensemble composed of two networks for critics. For discriminator
and backward map we use a standard MLP with ReLu activation (see Fig. 10). Refer to Tab. 2 for more
details.
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Figure 10: Visual representation of the network architectures.

Hyperparameter Critics (F, QD, QR) Actor Discriminator B

Input Variables (x , a, z) (x , z) (x , z) (x)
Output Dim F: d, QD,QR: 1 29 1 d
Observation Variable x (ot,H , st) ot,H (st , ot) (st , ot)
Embedding Residual Blocks 4 4 – –
Embedding Hidden Units 2048 2048 – –
Residual Blocks 6 6 – –
Feed Forward Hidden Layers 1 1 2 1
Feed Forward Hidden Units 2048 2048 1024 256
Activations Mish Mish ReLU ReLU
Number of Parallel Networks 2 1 1 1

Num. Parameters (no target) F: 135.8M, QD,QR: 134.8M 31.9M 2.9M 0.2M

Total Parameters 440.5M

Table 2: Network architecture parameters used for real tests. st is the privileged information and ot is the
proprioceptive information. ot,H = {ot−H , at−H , . . . , ot} denotes the history of proprioceptive states and actions.
We exclude target networks when counting the number of parameters.
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B.3 BFM-Zero Algorithm Details

We provide here a sketch of BFM-Zero in (Alg. 1). We report the algorithm without parallel networks
for clarity. For clarity, we also report the FB loss here. Let a′i ∼ π(x

′
i , zi) where x i = (oi,H , si), then

ℓfb =
1

2n(n− 1)

∑

i ̸=k

�

F(x i , ai , zi)
⊤B(s′k, o′k)− γF(x ′i , a′i , zi)

⊤B(s′k, o′k)
�2

−
1
n

∑

i

F(x i , ai , zi)
⊤B(o′i , s

′
i)

+
1

2n(n− 1)

∑

i ̸=k

�

B(s′i , o′i)
⊤B(s′k, o′k)
�2
−

1
n

∑

i∈[n]

B(s′i , o′i)
⊤B(s′i , o′i)

+
1
n

∑

i∈[n]

�

F(x i , ai , zi)
⊤zi − B(s′i , o′i)ΣBzi − γF(x ′i , a′i , zi)

⊤zi

�2

(B.1)

Algorithm 1 BFM-Zero Pre-Training
1: Initialize empty train buffer: Donline← ;
2: Initialize expert bufferM with action-free trajectories
3: for t = 1, . . . do
4: //Online interaction
5: Sample z t = {ze}

Nenv
e=1 ∈ R

Nenv×d (if needed)
6: Execute at ∼ π(o t,H , z t) ∈ RNenv×A in the simulated environments
7: Store (s t , o′t,H , at , s ′t , o′t+1,H , z t) in Donline

8: //Update
9: for j = 1, . . . , Nups do

10: Sample a batch of n= Nbatch transitions {(oi,H , si , ai , o′i,H , s′i , zi)}ni=1 from Donline

11: Sample a batch of n
Tseq

sequences {(w j,1, w j,2 . . . , w j,Tseq
)}

n
Tseq
j=1 fromM where w= (st , ot)

12: //Encode expert and update discriminator

13: z j ←
1

Tseq

∑Tseq
t=1 B(w j,t) ; z j ←

p
d

z j
∥z j∥2

14: ℓdiscriminator = −
1
n

∑

n
Tseq
j=1

∑Tseq
t=1 log D(w j,t , z j)−

1
n

∑n
i=1 log(1− D(si , oi , zi))

15: //Update representation F and B so that F(s, a; z)⊤B(s′)≈ Mπz (ds′|s, a)
16: Refer to Eq. B.1
17: //note that D does not use history
18: Compute discriminator reward: rD

i ← log(D(si , oi , zi))− log(1− D(si , oi , zi)), ∀i ∈ [n]
19: Let x i = (oi,H , si) and sample ui ∼ π(oi,H , zi) for all i ∈ [n]. Then

20: ℓcriticD
= 1

n

∑

i∈[n]

�

QD(x i , ai , zi)− rD
i − γQD(x ′i , ai , zi)

�2

21: ℓcriticR
= 1

n

∑

i∈[n]

�

QR(x i , ai , zi)−
∑

k raux
k (x

′
i)− γQR(x ′i , ai , zi)

�2

22: ℓactor = −
1
n

∑

i∈[n]

�

F(x i ,ui , zi)⊤zi +αDQD(x i ,ui , zi) +αRQR(x i ,ui , zi)
�

23: //Update target networks

B.4 Training Environments

To better facilitate sim-to-real transfer, we incorporated domain randomization, additive observation
noise and regularization rewards in the training environment. Refer to Fig 11 for details.
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Domain Randomization

Parameter Range

COM Offset [m] U ([−0.02,0.02])
Link Mass U ([0.95, 1.05])
Friction U ([−0.5,1.25])
Default Joint Pos [m] U ([−0.02,0.02])
Push Robots [m/s] U ([0, 0.5])

Additive Observation Noise

Observation Range

qt − q̄ U ([−0.01, 0.01])
q̇t U ([−0.5, 0.5])
gravt U ([−0.05, 0.05])
ω̇root

t /4 U ([−0.05, 0.05])

Regularization Rewards

Name Weight

DoF Limit −10
Action Rate −0.1
Self Contact −1
Feet Orientation −0.4
Ankle Roll −4
Feet Slip −2

Figure 11: Details in training environment.

C Tasks and Metrics

In this section, we provide a complete description of the tasks and metrics.

Goal-based evaluation We have manually extracted 21 “stable” poses (i.e., states with zero velocities)
from the train dataset (i.e., LAFAN1) and 10 poses from the test dataset (i.e., AMASS). We report the
selected poses from LAFAN1 in Fig 12. To evaluate how close is the agent to the goal pose, we use the
joint error defined as following

Empjpe(e, g) =
1
|e|

|e|
∑

t=1

∥qt(e)− q(g)∥2

where e is an episode and q is the joint position (i.e., 29D). We report the average across goals. The
episodes are fixed in length H = 500.

Figure 12: Goal poses selected from frames of the LAFAN1 dataset [Harvey et al., 2020].
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Tracking evaluation This evaluation aims to assess the ability of the model to imitate a sequence of
poses, ideally matching both positions and velocities. We evaluate the agent both on the train dataset
(i.e., LAFAN1) and on out-of-distribution motions selected from AMASS (retargeted to G1). In particular,
we randomly selected 175 motions from the CMU dataset of AMASS. For evaluation, we use the same
metric as in goal evaluation, i.e.,

Empjpe(e, m) =
1
|e|

|e|
∑

t=1

∥qt(e)− qt(m)∥2

and we report the average across motions.

Reward evaluation We define 6 reward categories inspired by [Tirinzoni et al., 2025]. The reward
can be expressed as a function of the next state and normalized in [0, 1].

Standing. We evaluate the agent’s ability to stand with the pelvis at different heights. move-ego-0-0
requires pelvis above 60cm and zero velocity, while move-ego-low0.5-0-0 requires the pelvis to be
between 50cm and 65cm.

Locomotion. This category includes rewards related that requires the agent to move at a certain speed,
in a certain direction and at a certain height. We consider 5 representative rewards (move-ego-0-0.7,
move-ego-90-0.7, move-ego-(-90)-0.7, move-ego-0-0.3, move-ego-180-0.3) which include
forward, lateral and backward movement. We additionally test also walking forward but with the pelvis
at a low height (move-ego-low0.6-0-0.7).

Rotation. We require the robot to rotate along the vertical axis (i.e., while standing). We consider
rotating clockwise and counterclockwise (i.e., rotate-z-5-0.5 and rotate-z-(-5)-0.5).

Ground poses. To further stress the ability of the model to control the vertical position, we define rewards
requiring the agent to sit on the ground (sitting) or having the pelvis slightly above the ground
(crouch-0.25 is about 25cm above the ground).

Arm raise. We require the robot to stand in a steady position and to reach a certain vertical posi-
tion with the arms (measured at the wrists). We consider low (z ∈ [0.6m, 0.8m]) and medium (z >
1m) positions for the wrists, with soft margins (raisearms-l-l, raisearms-l-m, raisearms-m-l,
raisearms-m-m).

Combined rewards. We finally evaluate the ability of the agent to maximize rewards that require combin-
ing multiple skills. In particular, we test combinations of locomotion and rotation with arm movements.
We selected 8 combinations of rewards.

Overall, we tested 24 rewards and evaluated perfomance via the cumulative return over episodes of
T = 500 steps. The initial state of an episode is the default pose.
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Figure 13: Tracking and reward performance on the test set for different models and datasets. The lower the
better for tracking and the higher the better for reward.

D Additional Results

D.1 Data Size and Model Size

We perform ablations on both the data and model size. For training the model in the main paper, we
used only the LAFAN1 dataset [Harvey et al., 2020]. In these ablations, we additionally leverage motions
from the CMU and BMLHandball subsets of AMASS [Mahmood et al., 2019]. We consider the individual
datasets (referred to as LAFAN1 and AMASS in the figure), as well as datasets obtained by merging X
percent of the two datasets (with X = {12.5%, 25%,50%, 75%,100%}). We evaluate different network
architectures, including simple feed-forward networks and residual architectures with a varying number
of blocks (see Tab. 3). For tracking, we use the same test dataset as in [Tirinzoni et al., 2025], but we
removed motions from CMU and BMLHandball to ensure complete separation from the training datasets.
For reward inference, we use 600,000 samples from the LAFAN1 dataset for all configurations. We report
the results of our ablation in Fig. 13 over a single seed.

As we increase the total capacity of the model, tracking performance improves for almost all of the
training mocap datasets. LAFAN1 is the only case where performance saturates quite early. We believe
this is because the training dataset is a subset of the AMASS dataset, and despite being separated from
the training data, it is likely much closer to the motions in CMU and BMLHandball than to those in
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Number of Parameters
Architecture Model π QR B QD D F Total

ResNet 3-block, 2048dim 19.3M 59.2M 201k 59.2M 2.9M 60.3M 201.1M
ResNet⋆ 6-block, 2048dim 31.9M 134.8M 201k 134.8M 2.9M 135.9M 440.5M
ResNet 9-block, 2048dim 44.5M 210.4M 201k 210.4M 2.9M 211.5M 679.9M
ResNet 3-block, 1024dim 5.5M 17.0M 201k 17.0M 2.9M 17.6M 60.2M
ResNet 6-block, 1024dim 8.6M 36.0M 201k 36.0M 2.9M 36.5M 120.1M
ResNet 9-block, 1024dim 11.8M 54.9M 201k 54.9M 2.9M 55.4M 180.1M
MLP 2-layer, 1024dim 4.4M 10.7M 201k 10.7M 2.9M 11.2M 40.1M
MLP 2-layer, 2048dim 15.1M 34.0M 201k 34.0M 2.9M 35.0M 121.2M
MLP 4-layer, 1024dim 6.5M 14.9M 201k 14.9M 2.9M 15.4M 54.8M
MLP 4-layer, 2048dim 23.5M 50.8M 201k 50.8M 2.9M 51.8M 179.9M

Table 3: Configurations of the architectures and total number of parameters. ⋆ denotes the configuration used
in the main paper.

LAFAN1. We can further notice that residual architectures achieve better performance w.r.t. simple MLP
architectures, and we can scale residual architectures to larger sizes. Furthermore, we found training
to be instable when scaling MLP to larger architectures.

Similarly, we observe a mild improvement trend for reward inference when increasing the model size.
However, training with LAFAN1 (in some proportion) appears to be important in this case, as reward
performance drops when we train only with the subset of AMASS. We also evaluated reward inference
performance using both the training buffer and the training motion set. In both cases, the average
performance decreases, with a much more significant drop when using the training buffer. We believe
this may be due to the fact that samples in the buffer are collected with domain randomization, whereas
the motion buffers are not randomized. Selecting the optimal dataset for reward inference could be an
interesting direction for future research.

D.2 Application of BFM-Zero on Booster T1

We additionally evaluate the generality of our framework by testing BFM-Zero on Booster T1 humanoid
robot. The LAFAN1 dataset is retargeted to T1 using LocoMujoco [Al-Hafez et al., 2023] and we train
the policy with exact same hyper-parameters as G1. The algorithm shows strong generalization ability,
allowing T1 also to perform natural walking and expressive dancing motions, as shown in Figure 15.
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Figure 14: Reward inference performance when using the experience generated by the agent (i.e., online replay
buffer) or the motion dataset used for training. We get better reward performance when using the motion dataset,
in particular when using LAFAN1 (see Fig. 13).

Figure 15: Application of BFM-Zero on Booster T1.
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