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Abstract— Recent works in the robot learning community
have successfully introduced generalist models capable of con-
trolling various robot embodiments across a wide range of
tasks, such as navigation and locomotion. However, achieving
agile control, which pushes the limits of robotic performance,
still relies on specialist models that require extensive parameter
tuning. To leverage generalist-model adaptability and flexibility
while achieving specialist-level agility, we propose AnyCar, a
transformer-based generalist dynamics model designed for agile
control of various wheeled robots. To collect training data, we
unify multiple simulators and leverage different physics back-
ends to simulate vehicles with diverse sizes, scales, and physical
properties across various terrains. With robust training and
real-world fine-tuning, our model enables precise adaptation
to different vehicles, even in the wild and under large state
estimation errors. In real-world experiments, AnyCar shows
both few-shot and zero-shot generalization across a wide range
of vehicles and environments, where our model, combined with
a sampling-based MPC, outperforms specialist models by up
to 54%. These results represent a key step toward building a
foundation model for agile wheeled robot control. We will also
open-source our framework to support further research.

I. INTRODUCTION

The use of the transformer [5] architecture in contempo-
rary robot learning is ubiquitous across perception [6, 7],
planning [8] and control [9] tasks. Reinforcement learning
with transformers, such as [10] and [11], is used in many
downstream applications in bi-manual manipulation [12],
navigation [13], humanoid locomotion [14], and whole-
body tele-operation [15, 16]. Vision-language-action (VLA)
models such as OpenVLA [17], RT-1 [18], and RT-2 [19]
demonstrate the scalability of employing transformers in
robotics. These models trained on internet-scale data can
generalize knowledge and skills to different complex tasks.

Recent advances in robot learning have also introduced
more “specialist” systems that can perform highly agile
locomotion tasks [20–23]. In particular, on wheeled robots,
previous works have achieved high-speed autonomous driv-
ing on racetracks [24], grass fields [25], loose sand [26,
27], and off-road terrain [28, 29]. However, most of these
efforts [28, 29] are optimized for specific car models and
environments, requiring extensive system identification and
model training [25, 26], which is costly to fine-tune and
difficult to transfer to other wheeled platforms.

On the other hand, agile wheeled control for safety-critical
applications requires precise dynamics modeling when run-
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Fig. 1: Performance of AnyCar and baselines in the wild
under state estimation errors. Above: A 10 cm tolerance cor-
ridor is set as a checkpoint. Below: each row represents the
true trajectory of one method, and each column corresponds
to a specific setting for the 1/16 scale car: high speed (2 m/s),
towing a box, and replacing the front left tire with a plastic
wheel. All settings significantly alter the vehicle dynamics.

ning at high speed, since small errors can lead to catastrophic
failures such as crashes [25, 30]. There are works that attempt
to mitigate this issue by applying neural system identifica-
tion [9, 30, 31] to adapt the model to different environmental
factors such as tire degradation, ground surface imperfections
[31], and towed objects [30]. Nevertheless, these methods
still require assumptions about the specific car setup (e.g.,
size and wheelbase of the car).

A key question that arises is: Can we train a generalist
wheeled-robot dynamics model that achieves the perfor-
mance of a specialist model for each setup? In this work,
we propose AnyCar (depicted in Figure 2), an initial effort
to train a vehicle dynamics transformer that can predict the
trajectory of various cars in various settings through in-
context adaptation. Our contributions are three-fold:

https://lecar-lab.github.io/anycar/
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Fig. 2: AnyCar System Pipeline. Phase 1: We collect 100M data in 4 different simulations for pre-training and 0.02M
few-shot real-world data for fine-tuning the model. Phase 2: We pre-train the model with the simulation dataset and enhance
prediction robustness through masking, adding noise, and attacking the inputs. We also fine-tune using the fine-tuning dataset.
Phase 3: We deploy AnyCar in the wild under state estimation error (using SLAM [1–3] and VIO [4]) to control different
vehicles (1/10 scale, 1/16 scale) with different settings (tow object, 3D-printed wheels) on different terrains.

• We build a universal synthetic data generator that col-
lects data across diverse vehicles and environments,
using physics engines with varying levels of fidelity
(e.g., DBM, MuJoCo, Isaac Sim, Assetto Corsa Gym).

• We propose a two-phase robust vehicle dynamics trans-
former training method that leverages simulation pre-
training and real-world fine-tuning to handle sim2real
mismatches and state-estimation errors.

• We integrate the dynamics transformer with a sampling-
based MPC and demonstrate real-world performance on
different car platforms and in different environments,
both indoor and outdoor, achieving up to 54% perfor-
mance improvement over the baseline methods.

II. RELATED WORK

A. Neural Dynamics Model and Adaptive Control

Neural networks, especially transformers, can be used
to learn the dynamics of any arbitrary systems [32] or a
residual on top of a nominal model, which is expressed in
traditional state-space equations [9, 33]. Data-driven tech-
niques can help robots adapt to time-varying dynamics. In

particular, open-loop adaptation based on teacher-student
training can effectively bridge the Sim2Real gap in RL,
such as rapid motor adaptation (RMA) [34]. When real-
world ground truth is available, the adaptation can be learned
in a more supervised fashion. Safe deep policy adaptation
(SafeDPA) [30] performs self-supervised real-world fine-
tuning. Neural-Fly [33] trains a residual dynamics model
to learn a good representation of environment disturbances
with a small amount of real-world data. Learning model
predictive control (LMPC) [24, 35] directly regresses a local
linear approximation of the state-space dynamics based on
a neighborhood of nearest historical states collected in the
real world. However, adaptation-at-scale remains an open
challenge, particularly when dynamics differ significantly,
such as with robots varying in parameters or embodiments.

B. Cross Embodiment

Recent research shows that deep learning models trained
at scale can control a variety of robots using the same
policy [36, 37]. CrossFormer [36] highlights that training a
single transformer on tasks across six embodiments (wheeled
robot, quadruped, manipulator, etc.) works even without



aligning the action space of these embodiments. The open X-
Embodiment dataset [38, 39] focuses on robot manipulation
across different embodiments. However, no existing general-
ist performs agile control. To reconcile generalist adaptability
and specialist agility, AnyCar addresses generalization across
the same form of embodiment, say, wheeled robots, which
is a scope reduction from cross-embodiment.

C. Transformer for Low-Level Control

Transformers have shown potential in low-level control,
with attention patterns in Trajectory Transformer effectively
capturing properties of Markov decision processes (MDPs)
[10]. This raises the question of whether transformers, with
their inductive bias on pairwise attention between sequence
elements, can achieve efficient training and representation
of Markovian dynamics for low-level control. Recent work
has begun exploring this area. [16] uses a transformer for
humanoid whole-body control, though without addressing
cross-embodiment generalization. [9] applies a transformer
for online system identification in vehicular robots, using
historical states to generate a context vector for a neural dy-
namics model. Despite these advancements, current literature
lacks examples of transformers excelling in both specialized
tasks (e.g., agile locomotion or dexterous manipulation) and
generalization across different robots or tasks.

III. OVERVIEW

Notation. xt, at are state and action at time step t. We use
x1:t to denote a sequence {x1, · · · , xt}. x̂ denotes estimation
of x (e.g., from VIO) and â is a with noise.

To demonstrate the practical application of our method, we
focus on trajectory tracking in unstructured environments for
a range of vehicles, which can be formulated as follows:

maximize
a0:T

T∑
t=0

R(xt, at)

subject to xt+1 = f(xt, at, ct), ∀t = 0, 1, . . . , T

where R(xt, at) is the reward function and xt+1 =
f(xt, at, ct) represents the system dynamics with ct repre-
senting all physics characteristics related to car dynamics and
the environment conditions such as terrain, payload, .etc. The
state is defined by xt ≜ [pxt , p

y
t , ψt, ṗ

x
t , ṗ

y
t , ω], which contains

position (pxt , p
y
t ), heading angle ψt, linear velocity (ṗxt , ṗ

y
t ),

and angular velocity ω. The action at ≜ [T , δ] contains
throttle T and steering angle δ. Our model is a seq2seq model
that can predict the future state sequence from imperfect state
and action history sequence and future action sequence:

xt+1:t+H ≈ fAnyCar
θ ( x̂t−K:t, ât−K:t−1︸ ︷︷ ︸

noisy state and action history

, at:t+H−1︸ ︷︷ ︸
future actions

), (1)

where K denotes history length and H denotes prediction
horizon (illustrated in Figure 2 Phase 2). We train a trans-
former to approximate Equation (1) for various cars and
terrains via its in-context adaptation capability. Our model
not only can learn adaptive dynamics but also a filter that
can handle noisy state estimation x̂ and action â. Compared

with previous works that assumes one specific car model with
limited adaptable parameters [9, 24, 26, 30, 31], AnyCar can
adapt to various types of car with or without assumptions
about the environment. To learn θ, we design two-stage
training pipeline. In the first stage, in Section IV, we generate
large scale dataset which contains trajectories of various cars
in different terrains using different physics simulations; we
then pre-train the AnyCar transformer fAnyCar

θsim
(Figure 2

Phase 2) in Section IV-B. In the second stage, we collect few-
shot real-world data and fine-tune the transformer fAnyCar

θfine-tune

in Section IV-C. After these two stages, the model fAnyCar
θfine-tune

can accurately predict future trajectory for different cars even
under state-estimation error.

With an accurate dynamics model, we apply the Model
Predictive Path Integral (MPPI) to perform trajectory track-
ing. MPPI is a sampling-based MPC approach that minimizes
the cost-to-go for sampled trajectories and selects optimal
controls by weighting multiple candidate trajectories based
on their performance. We choose MPPI for its ability to
leverage parallel computation and its training-free nature,
with no need for a reduced-order model. In Section V-A,
we describe the detailed system design for trajectory tracking
using AnyCar transformer with MPPI to achieve control at
50Hz in the real world. Finally, in Section VI, we showcase
the deployment of AnyCar in various real-world scenarios,
demonstrating its versatility and robustness across different
vehicles and environments.

IV. MODEL AND DATA

In this section, we describe the dataset collection and
model training strategies of AnyCar. As shown in Figure 2
Phase 1 and Phase 2, we highlight our data collection in
massive simulation and few-shot real-world data, and our
robust training and finetuning pipeline.

A. Pre-Training with Massive Simulated Data

Scene Generation. To collect a diverse dataset, we lever-
age the low-cost nature of simulation and generate a large
amount of simulated data. Our data generation has three
sources of diversity: 1) dynamics, 2) scenario, 3) controller.
As illustrated in Figure 2 Phase 1, we synthesize trajectories
of various cars and terrains via four distinct simulators: Dy-
namic Bicycle Model [31] (DBM)-based numeric simulation,
MuJoCo, IsaacSim, and Assetto Corsa Gym [40].1

Curriculum Model Training. To ensure data distribution
coverage, we diversify between on-policy and off-policy data
via a two-stage curriculum learning method. In stage one, we
collect high-volume off-policy data as warm-up, by building
a hybrid controller where we use a pure pursuit controller
for steering δ and a PD controller for throttle T , to track ran-
domly synthesized reference tracks. After collecting 200M
timesteps that are usable for training a general model for non-
agile tasks (in which the target velocity is smaller than the
physical limit), we switch to stage two, where we deploy an
on-policy NN-MPPI controller (described in Section V-A) to

1The settings are summarized in https://lecar-lab.github.io/anycar/
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track agile trajectories, and periodically update the network
with the collected on-policy trajectory.

B. Robust In-Context Adaptive Dynamics Model

Model Structure. As illustrated in Figure 2 Phase 2,
the historical states in Equation (1) are linearly projected
into a 64-dimensional latent space with an encoder layer
Pstate(x) : R6 → R64. The historical actions pass through
a different encoder Pact(a) : R2 → R64 of similar size.
We then interleave and stack them to make a complete
history token sequence S2K−1×64, which is supplied to the
transformer as the context. The future actions are tokenized
with Pact(a) and stacked as a sequence AH×64. Both S and
A sequences are then summed with two learnable positional
encoders. After passing the context S and input A to the
transformer decoder, we obtain S′H×64, which is then down-
projected into the state-space with DPstate(x) : R64 → R6.
This becomes the final state sequence prediction.

Robust Training. To learn a robust model fθ for Equa-
tion (1) under various disturbances, we propose to add three
techniques in pre-training, i.e., mask out, add noise, and
attack (Figure 2). We implement mask out by applying
randomized cross-attention mask to transformer, then add
noise ϵ ∼ N (0, ϵmax). We also add attack: unreasonably large
or small values to random dimensions in history to simulate
state estimation errors in the real-world. As discussed in Sec-
tion IV, these techniques collaboratively improves robustness
for successful real-world deployment.

C. Fine-Tuning with state-estimation error reduction

After pre-training fAnyCar
θsim

, we fine-tune the model with
10 minutes of real-world data (0.02M) to reduce the sim2real
gap and mitigate state-estimation error. To collect real-
world data, we control the car via joystick to follow a few
random curved trajectories in a motion capture field and
collect both the state from on-board state-estimators and the
ground truth states provided by the Vicon system, as shown
in Figure 2 Phase 1. We then fine-tune fAnyCar

θsim
on collected

data under the constraint of ||θfine-tune − θsim||2 ≤ ϵtune to
prevent catastrophic forgetting. In practice, we also apply
data rehearsal to assist. The model after fine-tuning fAnyCar

θfine-tune

is ready to deploy at zero-shot.

V. SYSTEM DESIGN

In this section, we describe the system that leverages
AnyCar to perform various trajectory tracking tasks.

A. MPPI Controller

As introduced in Section III, we choose to evaluate our
method with MPPI instead of RL and MPC, because RL
would have required optimizing additional policy and value
function parameters, which is outside the scope of this work.
Likewise, neural MPC [41] would have resulted in a reduced-
order approximation of our neural dynamics model that is
undesired for a fair evaluation.

We employ a variant of MPPI called Covariance-Optimal
MPC (CoVO-MPC) [42], which improves upon vanilla MPPI

Normalized Testing Error 

1M 10M 100M 

4 

2 

1 

0.5 

Transformer (AnyCar) 
GRU 
MLP 
LSTM 
CNN 

Fig. 3: Comparison of different model structures and data
scales. The reported testing error is normalized using the
mean and standard deviation of the evaluation dataset.

with adaptive sampling covariance to achieve an optimal
convergence rate on the cost function.

1) Trajectory Sampling: Let xt, at be state and action at
time t. For given control horizon H , we randomly sample
N action sequences {ait:t+H−1}Ni in a normal distribution,
whose mean and covariance are computed with [42]. We roll
out each action sequence with the AnyCar model and com-
pute their cumulative rewards. In order to generate smooth
action sequences, we re-parameterize the control sequence
a0:T with a set of time-indexed knots represented by θ0:k
[43]. Given query point τ , the control can be evaluated by
aτ = spline(τ ; (τ0:k, θ0:k)).

2) Reward function: To motivate tracking reference way-
points, we use the single-step reward function from [28],
which is given by

r(x, a, x̂) = w1||p−p̂||2+w2||ψ−ψ̂||+w3||vx−v̂x||+w4||δa||,

where p denotes position, ψ is heading angle, vx is longitude
velocity, and δa is action increment.

3) Computation: We implement the MPPI in JAX [44]
and the transformer model in TransformerEngine. We eval-
uate 600 action sequence samples on the model in parallel,
achieving 20 ms (50 Hz) real-time performance on a RTX
4090 GPU. We note that further optimizations, such as KV
caching, sharing history token attentions between samples,
and TensorRT conversion can enable edge deployment.

B. State Estimation

In our experiments with ground truth data, we use a motion
capture system to directly observe the position and velocity
of the vehicle. For in-the-wild experiments, we estimate the
linear and angular velocity of the vehicle by fusing motor
odometry and IMU data using an Extended Kalman Filter
(EKF) [45]. We then correct for the odometry drifting using
2D LiDAR SLAM [1–3], or 3D SLAM with visual-inertial
odometry (VIO). We will demonstrate AnyCar’s fine-tuning
pipeline can adapt to state estimation error in Section VI.

C. Low-Level Controller

Upon receiving a throttle (acceleration) and steering (an-
gle) command, a low-level module maps the throttle to motor
current with a simple linear mapping, and maps the steering
angle to servo angle. Adapting to the discrepancies in these
rough mappings and the latency in actuator responses is also
a goal of our fine-tuning pipeline.
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Fig. 4: Visualization of AnyCar’s transformer attention in three real-world settings: (a) low speed at 0.5 m/s, (b) high speed
at 2 m/s, and (c) towing an object at 2 m/s, all tracking the same reference trajectory. AnyCar’s transformer consistently
focuses on the nearest 50 steps across all settings and adaptively attends to different sections of the track. For example, it
attends to the first corner in setting (b) and the second corner in setting (c).

TABLE I: Indoor Results using Ground Truth State-
Estimation (Motion Capture)

Setting Method EPrediction ↓ ETracking ↓

Few-shot performance in fine-tuned scenarios

1/10 Scale Car PP - 0.45 ± 0.02
+ Tow Box AnyCar (Ours) 0.27 ± 0.24 0.35 ± 0.04

AnyCar w/o FT 0.54 ± 0.55 0.47 ± 0.23
Specialist 0.14 ± 0.09 0.43 ± 0.05

1/10 Scale Car PP - 0.54 ± 0.03
+ Payloads AnyCar (Ours) 0.11 ± 0.08 0.41 ± 0.03

AnyCar w/o FT 0.21 ± 0.11 0.47 ± 0.17
Specialist 0.26 ± 0.11 0.51 ± 0.03

Zero-shot generalization in unseen scenarios

1/10 Scale Car PP - 0.79 ± 0.62
+ Plastic wheels AnyCar (Ours) 0.26 ± 0.32 0.335 ± 0.03
(All 4 wheels) AnyCar w/o FT 0.32 ± 0.21 0.45 ± 0.15

Specialist 0.35 ± 0.15 0.334 ± 0.06

1/10 Scale Car PP - 0.52 ± 0.05
+ Plastic wheels AnyCar (Ours) 0.12 ± 0.08 0.39 ± 0.05
(Front 2 wheels) AnyCar w/o FT 0.20 ± 0.11 0.49 ± 0.09

Specialist 0.27 ± 0.11 0.41 ± 0.04

1/10 Scale Car PP - 0.57 ± 0.03
+ Plastic wheels AnyCar (Ours) 0.09 ± 0.06 0.49 ± 0.09
+ Tow box AnyCar w/o FT 0.18 ± 0.11 0.52 ± 0.09

Specialist 0.14 ± 0.05 0.60 ± 0.04

1/16 Scale Car PP - 0.37 ± 0.16
+ Plastic wheels AnyCar (Ours) 0.17 ± 0.08 0.31 ± 0.06

AnyCar w/o FT 0.25 ± 0.14 0.44 ± 0.08
Specialist 0.26 ± 0.11 0.55 ± 0.07

VI. EXPERIMENT

In this section, we aim to demonstrate the capability of
the proposed AnyCar by addressing the following questions:

• Q1: Can our model generalize to various cars and
terrains, and outperform specialist models?

• Q2: Can our model maintain its adaptation capability
even with imperfect state estimation?

• Q3: Why does the proposed robust vehicle dynamics
transformer outperform other baseline models?

Baselines. We compare AnyCar with three baseline meth-
ods: 1) AnyCar w/o FT: AnyCar without the real-world fine-
tuning phase, 2) PP: Pure Pursuit controller for steering
and PID controller for velocity tracking, and 3) Specialist: a
DBM model with system identification. We also consider two
types of state estimator setups: 1) motion capture (indoor),

which can be treated as ground truth, and 2) SLAM [1–3]
(indoor or outdoor), which is less accurate than motion
capture and much prone to drifting issues.

Metrics. We use the model prediction error EPrediction ≜
||xpred

t+1:t+H − xgt
t+1:t+H ||2 to assess prediction accuracy. We

also define ETracking ≜ w2||pt − p̂t||2 +w3||vt − v̂t||2, where
w2 and w3 are the same weights defined for position and
velocity tracking rewards in Section V-A, representing the
weighted sum of lateral error and velocity tracking error, to
evaluate trajectory tracking performance.

A. Evaluate Model In-context Adaptation Capability

To answer Q1, we isolate the estimation error and use
motion capture to provide ground truth for state estimation
in the real world. An 1/10 Scale Car was employed to tow
objects and carry payloads, to create a fine-tuning dataset
collected by human teleoperation. This dataset was then used
to fine-tune our dynamics model. The model was evaluated
across two categories: few-shot performance (e.g., towing
objects and varying payloads, both present in the fine-tuning
dataset) and zero-shot generalization (e.g., changing 3D-
printed wheels, towing objects with modified wheels, and
using a smaller car model with altered wheels). We use a
trajectory optimization method [24] to compute an on-the-
edge reference trajectory on a raceline. Our method, along
with other baselines (AnyCar w/o FT, PP, Specialist), was
then deployed to track this trajectory. The evaluation con-
sidered both model prediction error and closed-loop tracking
error with the full controller. Results in Table I show AnyCar
reaching and outperforming baselines in terms of prediction
error and tracking error in both few-shot and zero-shot cases.
We observed the same “emergent skill” seen in RT-X[38] that
after fine-tuning the model with data of one robot (1/10 scale
car) performing a certain task (track curves at low speed), a
different robot (1/16 scale car) also gets a performance boost
in doing a different task (agile raceline tracking).

B. Evaluate Model Capability in the Wild

To address Q2, we set up a 2D LiDAR-based SLAM stack
on an 1/16 scale car. The car was teleoperated to follow
an S-shaped path at low speed, collecting odometry data
from both the SLAM system and motion capture to create a
small-scale dataset of 24,000 timesteps. The model was then
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TABLE II: Indoor Results under State-Estimation Error

Setting Method EPrediction ↓ ETracking ↓

Few-shot performance in fine-tuned scenarios

1/16 Scale Car AnyCar (Ours) 0.30 ± 0.06 0.35 ± 0.02
+ Low Speed AnyCar w/o FT 0.32 ± 0.07 0.48 ± 0.06

Specialist 0.33 ± 0.05 0.42 ± 0.01

Zero-shot generalization in unseen scenarios

1/16 Scale Car AnyCar (Ours) 0.44 ± 0.11 0.57 ± 0.03
+ High Speed AnyCar w/o FT 0.52 ± 0.15 1.30 ± 0.11

Specialist 0.48 ± 0.10 1.26 ± 0.89

1/16 Scale Car AnyCar (Ours) 0.34 ± 0.10 0.57 ± 0.02
+ Tow 2 Box AnyCar w/o FT 0.41 ± 0.14 1.41 ± 0.09

Specialist 0.39 ± 0.09 0.93 ± 0.62

fine-tuned using the method in Section IV-C. Using the fine-
tuned model (AnyCar), we first evaluated our method in an
indoor environment under different conditions (low speed,
high speed, towing two boxes) with SLAM, and computed
metrics using ground truth data. The results in Table II show
AnyCar outperforms baselines with peak improvement of
54%. Based on Table I and Table II, we prove the necessity
of fine-tuning that aligning the dynamics model to handle
state estimation error.

Next, the system was moved to an outdoor environment
without further modification. To validate the robustness to
state-estimation capabilities of AnyCar, we set up a narrow
corridor along the reference trajectory, allowing the car to
pass with a 10 cm tolerance (demonstrated in Figure 1). Poor
tracking performance would result in the car colliding with
the walls. We compared our method with AnyCar w/o FT
and Specialist by calculating the percentage of times the car
successfully passed all checkpoints without collision (success
rate) for each method. The results in Table II show AnyCar
achieves the highest success rate in all settings, with the
specialist failing consistently due to the state estimation error.
We also visualize the transformer attention across different
settings in Figure 4, which demonstrates AnyCar’s in-context
adaptation in various settings. In addition to SLAM-based
state-estimator, we also show the deployment with ZED-
VIO [4] on the website.

C. Interpret the expressiveness and robustness of AnyCar

To interpret the success of AnyCar, we argue that scaling
and robust training are integral parts of our method. We
conducted experiments on datasets of varying sizes, encom-
passing trajectories of different cars running in different
terrains with timesteps ranging from 1 million (1M) to
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Fig. 6: Comparison of AnyCar robust training methods.
(a) Evaluate prediction error in real-world trajectories. (b)
Demonstrate predicted trajectory of different methods.

100 million (100M). Various model architectures, including
transformer, LSTM, GRU, CNN, and MLP, were evaluated,
and the normalized prediction error was calculated for each.
To ensure the models could be used with MPPI for 50Hz
control, we limited the maximum number of parameters for
each model to 200K. We create a testing dataset with 1M
data points sampled i.i.d. from the simulation, independent
of the training dataset, and evaluate all trained models on
the same testing dataset. The results shown in Figure 3
demonstrate that as the training dataset size increased from
10M to 100M timesteps, the prediction errors decreased
significantly, with the transformer model performing best at
the 100M scale. This highlights that the transformer structure
is the most effective for modeling diverse car dynamics
and environments compared with baseline models. However,
scaling the data and using the appropriate model structure
alone are insufficient. Under the optimal data scale and model
configuration, we found it crucial to apply the proposed ro-
bust training methods (including attack, noise, and mask-out
strategies), as discussed in Section IV-B. We systematically
evaluate all combinations of these components, resulting in
a total of 8 pre-trained models. Each model is fine-tuned
using the same dataset and evaluated on real trajectory.
The results, shown in Figure 6(a), demonstrate that the
model achieves the highest prediction accuracy and stability
only when all robust training components are activated. For
instance, Figure 6(b) shows that without full robust training,
the transformer’s predictions are vulnerable to noisy state
estimation, leading to significant errors. The combination of
model selection, large-scale data, and robust training explains
why the AnyCar performs better than the baseline models.

VII. LIMITATIONS AND FUTURE WORK

In this paper, we propose AnyCar, a first step towards
foundation model for agile wheeled control. In the future,
there are three interesting research directions. One is to use
KV caching in the transformer for full onboard computation.
The second is to optimize the MPPI control to be aware
of model uncertainty and safety. The third is to integrate
with existing foundation models for visual navigation [13]
to achieve fully agile autonomy in the wild.
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