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Figure 1: FALCON enables versatile forceful loco-manipulation tasks for humanoids: (a) Transporting Pay-
loads: walk, squat, twist torso with payloads; (b) Cart-Pulling with significant longitudinal forces; (c) Door-
Opening using both arms with multi-directional forces. Videos: https://lecar-lab.github.io/falcon-humanoid

Abstract: Humanoid loco-manipulation holds transformative potential for daily
service and industrial tasks, yet achieving precise, robust whole-body control with
3D end-effector force interaction remains a major challenge. Prior approaches
are often limited to lightweight tasks or quadrupedal/wheeled platforms. To
overcome these limitations, we propose FALCON, a dual-agent reinforcement-
learning-based framework for robust force-adaptive humanoid loco-manipulation.
FALCON decomposes whole-body control into two specialized agents: (1) a
lower-body agent ensuring stable locomotion under external force disturbances,
and (2) an upper-body agent precisely tracking end-effector positions with im-
plicit adaptive force compensation. These two agents are jointly trained in simu-
lation with a force curriculum that progressively escalates the magnitude of exter-
nal force exerted on the end effector while respecting torque limits. Experiments
demonstrate that, compared to the baselines, FALCON achieves 2× more accurate
upper-body joint tracking, while maintaining robust locomotion under force dis-
turbances and achieving faster training convergence. Moreover, FALCON enables
policy training without embodiment-specific reward or curriculum tuning. Using
the same training setup, we obtain policies that are deployed across multiple hu-
manoids, enabling forceful loco-manipulation tasks such as transporting payloads
(0-20N force), cart-pulling (0-100N), and door-opening (0-40N) in the real world.
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1 Introduction

Humanoid robots have demonstrated remarkable progress in locomotion and manipulation [1–6].
However, extending these capabilities to forceful loco-manipulation remains fundamentally chal-
lenging. Tasks such as door opening, highlighted in the 2015 DARPA Challenge [7], require not
only precise manipulation under dynamic, multi-directional forces but also maintaining lower-body
stability throughout the interaction. Meeting these demands calls for humanoid systems that can
flexibly adapt to varying payloads and contact forces without compromising overall precision and
robustness in loco-manipulation.

Reinforcement Learning (RL) has achieved impressive results for humanoid whole-body control [8–
27], yet existing RL approaches succeed mostly on lightweight tasks but do not consider significant
interaction force during loco-manipulation tasks. Currently, there are two main paradigms: (1)
Lower-RL-Upper-IK, which applies RL to lower-body locomotion while using kinematic solvers for
upper-body control [8, 9], lacks whole-body dynamics modeling for forceful interaction and has
limited whole-body coordination; (2) Monolithic-Whole-body-RL, which directly learns to control
all degrees of freedom [10, 11], suffers from inefficient exploration as a single policy must simulta-
neously learn weakly correlated locomotion and manipulation skills. Although some advances have
been made in force adaptation for quadrupeds [12–14, 28, 29], humanoids pose extra challenges like
instability, higher complexity, and stricter torque limits, especially in certain joint configurations.

In this work, we aim to develop an RL framework that enables humanoid robots to perform a diverse
set of force-adaptive loco-manipulation tasks. To this end, we introduce FALCON, a dual-agent RL
architecture trained with a carefully designed 3D force curriculum respecting joint torque limits.
Our key innovations include: (1) A dual-agent learning decomposition that separates lower-body
and upper-body policy training with tailored rewards while sharing the same whole-body proprio-
ception and commands; (2) A 3D force curriculum with joint torque feasibility that progressively
scales applied 3D forces on both end-effectors while enforcing joint torque constraints through in-
verse dynamics. FALCON enables efficient joint training of both stable locomotion and accurate EE
tracking in forceful loco-manipulation tasks. We validate FALCON on Unitree G1 and Booster T1
humanoids, demonstrating its generalization across different platforms through: (1) Transporting
Payloads, (2) Cart-Pulling, and (3) Door-Opening (Figure. 1), which require real-time adaptation to
significant unknown 3D interaction force. In summary, our main contributions are:

• We introduce FALCON, a dual-agent reinforcement learning framework that enables humanoids
to perform forceful loco-manipulation while adapting to substantial, unknown end-effector forces
(0–100N, up to 30% of body weight). FALCON improves the upper-body joint tracking accuracy
over prior methods by 100% while maintaining robust locomotion performance.

• To facilitate the efficient RL training, we design a 3D force curriculum with progressive force
application while ensuring joint torque feasibility and maximizing its force-adaptive capability.

• We validate FALCON on two different humanoid platforms (Unitree G1, Booster T1), achieving
strong cross-platform generalization with minimal tuning overhead.

2 Related Works

2.1 Humanoid Loco-Manipulation

Humanoid loco-manipulation remains a challenging control problem in robotics. While traditional
model-based methods (e.g., simplified dynamics models and MPC) [20, 13, 21–25, 30] offer real-
time planning, their reliance on manual design limits flexibility and generalizability. In contrast,
learning-based methods—particularly sim-to-real RL—have demonstrated promising results in ver-
satile loco-manipulation tasks [31, 17, 11, 8, 9, 32, 33]. For humanoids, two primary paradigms have
emerged: Lower-RL-Upper-IK and Monolithic-Whole-body-RL. For Lower-RL-Upper-IK, Lu et al.
[8] introduce PMP, which uses inverse kinematics (IK) and PD control for upper body control while
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locomotion is trained and conditioned on a Conditional Variational Autoencoder (CVAE) represent-
ing upper-body motions. Then, Ben et al. [9] propose HOMIE that follows the same decoupling
framework but introduces an exoskeleton-based cockpit for more intuitive human teleoperation. For
Monolithic-Whole-body-RL, Dao et al. [32] adopted a unified RL approach for box pick-and-place
tasks, training distinct skills (e.g., lifting, walking, stance) and orchestrating them via a finite state
machine. He et al. [16, 17] and Ji et al. [10] employ a teacher-student training framework to mimic
human motions for loco-manipulation tasks.

Despite these advances, few RL methods address significant unknown force disturbances on the
EEs for humanoid loco-manipulation, and both paradigms exhibit critical shortcomings accordingly.
Lower-RL-Upper-IK approaches suffer from delayed force compensation for upper-body control.
Monolithic-Whole-body-RL methods face sample inefficiency from coarsely related task objectives
between upper-body manipulation and lower-body locomotion, often leading to overfitting and the
behavioral dominance of either upper or lower body. In this study, inspired by [34–36], we propose
FALCON, a dual-agent RL framework employing task-specific reward formulations for upper-lower
body decomposition. Unlike separately trained architectures, the two agents in FALCON are jointly
trained with shared proprioception and commands, allowing mutual awareness of each other’s be-
haviors. This joint training prevents the agents from adapting in isolation and enables coordinated
responses to external forces that affect the full-body dynamics.

2.2 Forceful Interaction in Legged Robots

Forceful interaction has been extensively studied for quadrupedal robots with mounted arms, through
model-based approaches—particularly MPC combined with force planning and control for robust
and adaptive locomotion and manipulation [12, 13, 37]. Recent advances in RL have further en-
hanced adaptability, enabling quadrupeds to learn adaptive and agile force interactions including
impedance control [38] and aggressive force adaptation [14]. For humanoids, forceful interaction
presents significantly greater challenges due to their more complex dynamics and stringent joint
limits. Unlike quadrupeds with centralized mass distributions, humanoids exhibit coupled dynam-
ics between their upper and lower bodies, making force adaptation particularly difficult. Recent
model-based approaches have demonstrated force control for heavy-duty tasks [39, 22], but these
require prior knowledge of manipulated objects’ mass, center of mass (CoM), or pre-defined force
trajectories, limiting their applicability to unknown disturbances. While some works have attempted
explicit force estimation for humanoids [40], they are restricted to quasi-static scenarios and cannot
handle force adaptation in dynamic loco-manipulation scenarios.

In this paper, FALCON learns to implicitly adapt to unknown external forces on the different EEs
with a novel 3D EE force curriculum that considers humanoid joint torque limits. In this way, we
can maximize the force adaptability of the learned loco-manipulation policy while ensuring the joint
torque limits for robust and safe real-world deployment.

3 FALCON: Force-Adaptive Humanoid Loco-Manipulation

Humanoid loco-manipulation under external EE forces requires coordinated control of both the
lower and upper body. We first formulate the problem as a unified dual goal-conditioned policy
learning problem. Let the degrees of freedom (DoFs) of the humanoid be partitioned into lower-
body joints and upper-body joints, with nl denoting the number of lower-body DoFs, nu the number
of upper-body DoFs, and n = nl + nu the total number of actuated joints.

The robot proprioception spt ∈ St is defined as spt ≜ [qt−4:t, q̇t−4:t,ω
root
t−4:t, gt−4:t,at−5:t−1], which

contains five-step histories of joint positions qt ∈ Rn, joint velocities q̇t ∈ Rn, root angular velocity
ωroot

t ∈ R3, projected gravity gt ∈ R3, and previous actions at−1 ∈ Rn. The goal space Gt

consists of locomotion goals Gl
t ≜ [vlin,ang

t , ϕstance
t , hroot

t , wyaw
t ], specifying desired root linear and

angular velocities, stance indicators, root heights, and waist yaw angles, and manipulation goals
Gu
t ≜ [qupper*

t ], specifying target joint configurations for the upper body where qupper*
t ∈ Rnu

.
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Figure 2: Overview of FALCON. (a) Two agents with different sub-tasks are jointly trained with
shared whole-body proprioception. During training, we apply 3D external forces bounded by upper-
body joint torque limits on the end-effectors; (b) FALCON is deployed with either teleoperation or
an autonomy pipeline including FoundationPose [41] for pose estimation and motion planning.

Under this unified formalism, conventional methods differ mainly in how they generate the action
at ∈ Rn that commands the robot joints:

• Lower-RL-Upper-IK: lower-body actions al
t ∈ Al

t ⊂ Rnl

are generated by a policy πl : spt ×
⟨Gl

t,Gu
t ⟩ 7→ Al

t conditioned on whole-body proprioception and goals, while upper-body actions
au
t ∈ Au

t ⊂ Rnu

are computed through inverse kinematics (IK) solvers based on Gu
t .

• Monolithic-Whole-body-RL: a single policy π : spt×Gt 7→ at directly predicts the full-body action
at ∈ Rn, attempting to satisfy both locomotion and manipulation objectives simultaneously.

While Lower-RL-Upper-IK methods are sample-efficient, they neglect upper-body force compensa-
tion and whole-body coupling under EE force disturbances. In contrast, Monolithic-Whole-body-RL
methods improve expressiveness but suffer from exploration inefficiency due to the large action
space spanning coarsely related locomotion and manipulation objectives. To overcome these chal-
lenges, we introduce FALCON, a dual-agent RL framework that achieves training efficiency and
coordination through decomposition learning with shared whole-body observation.

3.1 Dual-Agent Learning Framework

As shown in Figure 2, FALCON jointly trains two agents, each specialized for a different subtask.
The lower-body locomotion agent learns a policy πl : spt×Gl

t 7→ Al
t with value function V l(·), while

the upper-body manipulation agent learns a policy πu : spt × Gu
t 7→ Au

t with value function V u(·).
Both agents observe the same proprioceptive input spt but optimize independent goal-conditioned
objectives:

rlt = Rl(spt ,Gl
t) (locomotion) rut = Ru(spt ,Gu

t ) (manipulation) (1)

These two policy parameters θl and θu are updated via proximal policy optimization (PPO [42]):

max
θl

E

[
T∑

t=1

γt−1rlt

]
(Lower-body) max

θu
E

[
T∑

t=1

γt−1rut

]
(Upper-body) (2)
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where γ is the discount factor. The upper-body target joint angles qupper
t (target joints of shoulders,

elbows, wrists) are randomly sampled from the AMASS dataset [43] during training, and calculated
via IK during deployment. The combined action from the two agents at = [al

t;a
u
t ] is sent to a joint-

level PD controller. As the real-world humanoid control is inherently partially observable, we adopt
asymmetric actor-critic training, where critics additionally access privileged information including
root linear velocities and EE forces F ee

t during training but not during deployment. Detailed reward
designs and domain randomization during training are provided in Appendix A.1 and Appendix A.2.

3.2 Torque-Limit-Aware 3D Force Curriculum

For humanoid robots—particularly those with relatively weak joint torque limits, such as the wrist
joints on the Unitree Humanoid G1— it is crucial to explicitly account for these torque constraints
when large external disturbances are applied to the end-effectors (EEs). Ignoring these limits during
upper body policy training can lead to unexpected or unsafe behaviors due to torque saturation or
joint limit violations in real-robot deployment. Additionally, it’s important to gradually increase the
external force during training, allowing the policy to progressively learn effective force adaptation
strategies. To achieve these, our force application framework follows through three principles:

Torque-Aware Force Computation: Before applying forces, we first need to estimate the max-
imum forces that we can exert on the left or right end-effector. Given the left or right end-effector
Jacobian JEE ∈ R3×nu

2 at its Center of Mass (CoM), their joint torque limit τ lim ∈ R3×nu
2 (with

τ lim ≥ 0), and the gravity compensation torque τ g ∈ R3×nu
2 which satisfies −τ lim ≤ τ g ≤ τ lim

to ensure feasibility, we estimate the maximum and minimum admissible forces fmax,fmin along
each Cartesian axis i ∈ x, y, z by analyzing the worst-case joint torque induced by a unit force
applied in each direction. The element-wise force bound can be computed in parallel as:

−τ lim ≤ τ g + JT
EEf

ee ≤ τ lim (3)

fmax
i = min

j

(
τ limj − τgj

|Jji
EE |+ ϵ

)
, fmin

i = max
j

(
−τ limj − τgj

|Jji
EE |+ ϵ

)
, (4)

where Jji
EE denotes the (j, i)-th element of the end-effector Jacobian matrix, and ϵ is a small positive

constant to prevent division by zero. After that, we sample the relatively ratio γ = [γx, γy, γz]
among x, y and z axis through Dirichlet Distribution [44], which satisfy

∑
i∈{x,y,z} γi = 1. The

feasible applied force will be uniformly sampled within the estimated range and expressed as:

fee
t =

∑
i∈{x,y,z}

Fi · ei, where Fi ∼ U [γi · fmin
i , γi · fmax

i ] (5)

This approach maximizes force adaptivity while respecting torque limits, leading to more effective
training than random sampling, as explained in Section 4.3. Note that applied forces may differ
between left and right EEs due to asymmetric upper-body configurations (Figure 2).

Progressive Force Curriculum: To facilitate progressive force adaptation, the estimated EE
forces are scaled by a global factor αg ∈ (0, 1), increasing over training, so the applied force
becomes F ee

t = αg · fee
t . During walking, planar forces are projected opposite to the velocity. A

low-pass filter is applied to reduce force jitter.

Position Randomization of the Applied Force: Learning-based force adaptation leverages pro-
prioceptive history to implicitly compensate for external forces, removing the need for explicit force
estimation [40] or sensing [45]. To improve robustness to variations in end-effector (EE) contact
points—which alter the torque mapping via the EE Jacobian—we randomize force application along
the EE link, from the wrist yaw to the distal segment, as illustrated in Figure 2.
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Eupper
tracking ↓ Eroot

tracking ↓

Methods N-Force M-Force L-Force N-Force M-Force L-Force

Lower-RL
Upper-IK

PD-w/o-Force-Curr. 0.46 ± 0.04 0.94 ± 0.05 1.44 ± 0.06 0.38 ± 0.04 0.66 ± 0.05 1.14 ± 0.06

PD-Force-Curr. 0.44 ± 0.03 0.93 ± 0.03 1.42 ± 0.04 0.33 ± 0.03 0.38 ± 0.03 0.46 ± 0.03

PID-Force-Curr. 0.24 ± 0.03 0.31 ± 0.03 0.60 ± 0.04 0.32 ± 0.03 0.35 ± 0.03 0.46 ± 0.04

PD-ID-Force-Curr. 0.29 ± 0.03 0.38 ± 0.03 0.53 ± 0.04 0.40 ± 0.03 0.42 ± 0.03 0.47 ± 0.04

M-WB-RL
w/o-Force-Curr. 0.46 ± 0.05 1.03 ± 0.07 1.65 ± 0.08 0.34 ± 0.04 0.67 ± 0.05 1.28 ± 0.07

with-Force-Curr. 0.43 ± 0.04 0.50 ± 0.04 0.73 ± 0.05 0.28 ± 0.03 0.32 ± 0.03 0.44 ± 0.04

FALCON
w/o-Force-Curr. 0.14 ± 0.03 0.55 ± 0.04 1.06 ± 0.06 0.32 ± 0.03 0.66 ± 0.05 1.24 ± 0.06

with-Force-Curr. 0.21 ± 0.03 0.24 ± 0.03 0.37 ± 0.04 0.27 ± 0.03 0.30 ± 0.03 0.45 ± 0.04

Table 1: Loco-Manipulation Evaluation of FALCON and Baselines in IsaacGym.

4 Simulation and Real-World Experiments

In this section, we present extensively quantitative comparison between FALCON and the baselines
as well as qualitative results on real-world deployment. We choose Unitree Humanoid G1 and
Booster T1 as our humanoid platforms. Specifically, we address the following key questions:

Q1: Can FALCON outperform other baselines in terms of both upper-body manipulation and lower-
body locomotion performance?

Q2: Why does FALCON has better training-efficiency compared to Monolithic-Whole-body-RL (M-
WB-RL) for force-adaptive loco-manipulation?

Q3: Does FALCON work for different humanoids to show cross-platform generalizability?

4.1 Evaluation Criterion

To evaluate the performance of the learned low-body locomotion and upper-body manipulation capa-
bilities, we consider the following metrics under dynamically unknown and 3D EE forces Ft ∈ R3,
given a sequence of target upper-body joints qupper*

t , target root velocities vlin,ang*
t and stance signal

ϕstance
t , where t = 1, 2, ..., T and T is the sequence length:

(ii) Upper-Body Joints Tracking Error: Eupper
tracking(q

upper*
t ) = 1

T

∑T
t=1

∣∣∣qupper
t − qupper*

t

∣∣∣
(iii) Root Velocity Tracking Error: Eroot

tracking(v
lin,ang*
t ) = 1

T

∑T
t=1

∣∣∣vlin,ang
t − vlin,ang*

t

∣∣∣
4.2 Baselines

We consider two types of baseline methods for force adaptation, both trained under the same goal
space (e.g., commands) in Section 3.1 and force curriculum described in Section 3.2, with each type
further including relevant ablation variants.

Decoupled Lower-body RL with Upper-body IK Controllers. For all variants, RL is used for
lower-body locomotion, and IK provides target upper-body joint angles from end-effector poses.
The key differences lie in the use of force curriculum and the upper-body joint tracking strategy:

(a) Upper-PD-w/o-Force-Curr.: A baseline following [8, 9], using PD control for upper-body joint
tracking without force randomization.

(b) Upper-PD: Extends (a) by incorporating force curriculum, enabling lower-body adaptation to
external forces; upper-body remains PD-controlled.

(c) Upper-PID: Extends (b) by adding an integral term to the upper-body controller to reduce
steady-state tracking error.
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Eupper
tracking ↓ Eroot

tracking ↓

Methods N-Force M-Force L-Force N-Force M-Force L-Force

FALCON
w/o-Torque-Limit-Aware. 0.42 ± 0.07 0.45 ± 0.08 0.61 ± 0.10 0.45 ± 0.03 0.46 ± 0.05 0.54 ± 0.05

with-Torque-Limit-Aware. 0.23 ± 0.03 0.26 ± 0.03 0.36 ± 0.04 0.30 ± 0.03 0.32 ± 0.03 0.39 ± 0.02

Table 2: Evaluation of FALCON using torque-limit-aware (Max-Force-Estimation) curriculum ver-
sus w/o torque-limit-aware force curriculum in IsaacGym. Our curriculum achieves significantly
better tracking performance, especially for upper-body manipulation under large forces.

(d) Upper-PD-ID: Extends (a) with a learned force estimator [38] and inverse-dynamics-based
torque compensation under quasi-static assumptions (details in Appendix A.3).

Monolithic Whole-body RL

(e) Monolithic-WB-RL-w/o-Force-Curr.: Built upon prior designs [11, 15], a single agent is trained
with the same goal commands as FALCON, but without applying any force during training.

(f) Monolithic-WB-RL-with-Force-Curr.: Based on (e), we adopt force randomization into the
training curriculum for force adaptation, while keeping the other training settings identical.

4.3 Simulation Results

To answer Q1 (Can FALCON outperform other baselines in terms of both upper-body manip-
ulation and lower-body locomotion performance?) and Q2 (Why does FALCON has better
training-efficiency compared to Monolithic-Whole-body-RL (M-WB-RL) for force-adaptive loco-
manipulation?), we conduct quantitative comparisons of our method with other two baselines in
IsaacGym on Unitree Humanoid G1.

Loco-Manipulation Performance: We evaluate FALCON and baselines on 252 ACCAD [46] mo-
tion targets under three force levels: (i) No-Force (αg = 0), (ii) Middle-Force (αg = 0.5), and
(iii) Large-Force (αg = 1.0), applied to both end-effectors. As shown in Table 1, across all set-
tings, FALCON with force curriculum achieves the lowest tracking errors in both upper-body motion
(Eupper

tracking) and root velocity (Eroot
tracking), demonstrating robust manipulation under disturbance. Under

L-Force, it reduces upper-body error to 0.37, outperforming PID-Force-Curr. (0.60) and M-WB-
RL (0.73). Root error remains low at 0.45, indicating stable locomotion. While force curriculum
benefits all methods, FALCON gains most due to its decomposed learning structure.

Torque-Limit-Aware Force Curriculum To assess the effectiveness of the proposed torque-limit-
aware force curriculum (Section 3), we compare it with a baseline that samples random forces from a
wide clipping range (X : [−100N, 100N], Y : [−100N, 100N], Z : [−100N, 5N]) without enforcing
torque feasibility. Training curves and quantitative results are shown in Figure 3 and Table 2. During
evaluation, applied forces remain bounded by the estimated admissible limits.

(b) Upper-body Joint Tracking Errors(a) Apply Force Scale 𝜶𝒈

Figure 3: (a) Progression of the Apply Force Scale αg; (b) Upper-
body Joint Tracking Errors During Training

Figure 3 (a) shows that force cur-
riculum saturates at a force scale
αg = 0.6 due to frequent viola-
tions of torque limits, which hin-
der further progression. Addition-
ally, as illustrated in Figure 3 (b),
the force curriculum w/o torque-
limit-aware results in larger upper-
body tracking errors, since excessive
forces regularly exceed the feasible
torque bounds, impairing the learning
of effective upper body force com-
pensation. Consequently, as shown in Table 2, policies trained w/o torque-limit-aware force cur-
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Eupper
tracking ↓ Eroot

tracking ↓

Methods N-Force M-Force L-Force N-Force M-Force L-Force

FALCON
Smaller-Force-Clip. 0.21 ± 0.03 0.24 ± 0.03 0.37 ± 0.04 0.27 ± 0.03 0.30 ± 0.03 0.45 ± 0.04

Larger-Force-Clip. 0.23 ± 0.03 0.26 ± 0.03 0.36 ± 0.04 0.30 ± 0.03 0.32 ± 0.03 0.39 ± 0.02

Table 3: Evaluation of FALCON with a smaller force clip range in Table 1 versus a larger force clip
range in Table 2.

riculum tend to overfit to the locomotion objective, compromising upper-body accuracy. In contrast,
our torque-limit-aware curriculum facilitates balanced learning of both upper-body joint tracking
and root velocity tracking under significant external disturbances.

Note that in Table 1, we use a narrower force clipping range (X : [−50N, 50N], Y : [−50N, 50N],
Z : [−60N, 5N]) compared to the wider range in Table 2 (X : [−100N, 100N], Y : [−100N, 100N],
Z : [−100N, 5N]). The results in Table 3 show that increasing the force range has minimal im-
pact on loco-manipulation performance, highlighting the robustness of our torque-limit-aware force
curriculum.

Upper-body Action Noise Std

Lower-body Action Noise Std

Upper-body Joint Tracking 
Error

Ankle Roll Penalty

Torso Orientation Penalty

Root Velocity Tracking Error
(b)(a)

Figure 4: Comparison of FALCON and M-WB-RL: (a) action
noise std; (b) tracking errors and penalties.

Exploration and Learning:
(i) Action Noise Std: As shown
in Figure 4 (a), FALCON ex-
hibits faster and smoother noise
decay in both upper and lower
body actions, indicating more
efficient and stable exploration.
In contrast, M-WB-RL suffers
from prolonged noise due to
entangled control objectives, es-
pecially for upper body actions.
(ii) Reward and Postural Stabil-
ity: As shown in Figure 4 (b),
FALCON achieves less tracking
errors in both upper-body joints
and base angular velocity while
in M-WB-RL these two reward terms tend to fluctuate. Additionally, M-WB-RL suffers from larger
torso and ankle penalties due to excessive whole-body compensation, resulting in unnatural bending
and CoM upright misalignment as shown in Figure 5.

4.4 Real-World Quantatitive Tracking Results

We evaluate FALCON on Unitree G1 with each hand loaded with 1.2kg payload in a real-world task,
which is walking at (0.5, 0.0)m/s with zero angular velocity, fixed height and waist, and keeping the
upper body in its default position. We compare against two baselines: (i) Upper-PD with Force Cur-
riculum, and (ii) Monolithic-WB-RL with Force Curriculum. As shown in Table 4, FALCON achieves
the lowest tracking errors, and perform stable and natural motion in heavy-duty loco-manipulation.

4.5 Real-World Deployment with Teleoperation

To answer Q3 (Does FALCONwork for different humanoids to show cross-platform generalizability?
), we deploy policies trained in simulation on the Unitree G1 and Booster T1 humanoids without
any reward or force curriculum modifications, thanks to FALCON efficient dual-agent training and
torque-limit-aware 3D force curriculum. As shown in Figure 1, we evaluate the policies on three
forceful loco-manipulation tasks: (1) Transporting Payloads, with 0-20N vertical forces while
maintaining stable locomotion and precise upper-body joint tracking; (2) Cart-Pulling, with up to
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Method Eupper
tracking Eroot

tracking

Upper-PD-Force-Curr. 1.81 ± 0.13 0.40 ± 0.04

M-WB-RL-Force-Curr. 0.81 ± 0.11 0.58 ± 0.05

FALCON 0.39 ± 0.08 0.42 ± 0.03

Table 4: Real-world Tracking Errors.
Upper-PD-Force-Curr. FALCON M-WB-RL-Force-Curr.

Figure 5: Real-World Payload Transportation.

Figure 6: Autonomous Tote Logistics: a humanoid robot walks without a tote, picks up the tote,
walks with the tote, and drops off the tote.

100N longitudinal (X-Y) forces during walking; and (3) Door-Opening, with up to 40N 3D forces
during stance. These force ranges are measured through a force gauge shown in Appendix A.4.

These results demonstrate that FALCON enables robust policy transfer across platforms with differ-
ent morphologies and actuation. The learned policies exhibit effective whole-body compensation:
the upper body responds adaptively to 3D forces, the lower body leans against significant longitudi-
nal forces, and the base height remains stable under vertical loads.

4.6 Real-World Deployment with Autonomy

We also deploy FALCON on the Unitree G1 for autonomous tote logistics, a representative ware-
house task. As illustrated in Figure 6, the robot is required to walk from an initial location to a
pickup station, lift a tote of unknown weight, and transport it to a designated area for precise place-
ment. The detailed implementation of the autonomous pipeline can be found in Appendix A.5.

5 Conclusion

In this paper, we introduce FALCON, a dual-agent reinforcement learning framework designed for
force-adaptive humanoid loco-manipulation. By decoupling the learning of the upper and lower
body, while maintaining coordination through shared proprioceptive feedback, FALCON achieves
superior adaptability in handling 3D end-effector forces during complex tasks. Our extensive eval-
uation demonstrates that FALCON outperforms both Lower-RL-Upper-IK and Monolithic-Whole-
body-RL baselines, achieving faster training convergence, reduced tracking errors, and more stable
performance across a variety of force regimes. Moreover, FALCON exhibits strong cross-platform
generalizability, successfully transferring policies from simulation to physical humanoids, includ-
ing tasks like transporting payloads, cart-pulling, and door-opening. These results underscore
FALCON’s potential for real-world deployment in forceful interaction scenarios.
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6 Limitations

Despite its strong performance, FALCON has two key limitations. First, it focuses solely on force
disturbances applied to the end-effectors, without accounting for contact forces on other body parts
or supporting multi-contact interactions. This restricts its applicability in scenarios involving whole-
body support, such as leaning, bracing, or collaborative lifting. Second, the current force curriculum
only considers external forces and ignores external torques. As a result, FALCON may struggle in
tasks that involve rotational disturbances, such as operating handles or tools with eccentric loading.
Addressing these limitations by incorporating multi-contact reasoning and torque-adaptive policies
remains an important avenue for future research.
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A Appendix

A.1 Reward Terms

We adopt the similar reward terms from [17, 11], but introduce some important penalties to ensure
the locomotion stability under significant external forces, and other tracking rewards for squat and
waist twist. The additioanl reward terms are summerized in Table 5:

Table 5: Additional Reward components and weights: penalty rewards for preventing undesired
behaviors for sim-to-real transfer, and task rewards to achieve desired loco-manipulation capability.

Term Expression Weight
Penalty

Hip pos ∥qhip
roll,pitch∥ -2.5

Negative knee joint
∑

j 1[qj < qmin
j ] -1.0

Stance tap feet |(pleft foot − pright foot)x| in base frame -5.0
Stance root |(proot − mid(pfeet))

y| -5.0
Stand still 1[no contact] -0.15
Ankle roll

∑
j |qroll

j | -2.0
Task Reward

Root linear velocity x exp(−4.0∥vx
t − vx∗

t ∥2) 2
Root linear velocity y exp(−4.0∥vx

t − vx∗
t ∥2) 1.5

Root angular velocity exp(−4.0∥vang
t − vang∗

t ∥2) 4
Root walk height exp

(
− |commandz−proot

z |
0.05

)
2

Waist dofs exp

(
−

∑
θ∈{yaw, roll, pitch}(θ

sim−θcmd)2

0.05

)
2

Upper body dofs exp
(
−∥qupper−qref∥

2
2

0.01

)
4

A.2 Domain Randomization

We apply the following domain randomization terms during training, which are important for suc-
cessful sim-to-real transfer.

Table 6: Domain randomization terms including dynamics randomization and external perturbation.
Term Value

Dynamics Randomization
Friction U(0.5, 1.25)

Link mass U(0.9, 1.2)× default kg
Base mass U(−1.0, 3.0) kg

P Gain U(0.9, 1.1)× default
D Gain U(0.9, 1.1)× default

Control delay U(0, 20)ms
External Perturbation

Push robot interval = 5s, vxy = 1m/s

A.3 Lower-RL-Upper-IK with Force Estimator

We jointly train a 3D force estimator, following a similar approach to [38], using the robot’s propri-
oception as input spt ≜ [qt−4:t, q̇t−4:t,ω

root
t−4:t, gt−4:t,a

l
t−5:t−1]. As illustrated in Figure 7 (a), the

estimator predicts the end-effector forces F̃
ee

t , which are then concatenated with full-body proprio-
ception and fed into the lower-body RL policy. Meanwhile, the upper-body joint torques with force
compensation are computed as τ = Kp(q

upper
t − qupper*

t ) +Kdq̇
upper
t + JT

EEF̃
ee

t .

We compare the estimated and applied forces in Figure 7 (b), showing close alignment between the
two. However, even with accurate force estimates, changes in the contact point on the end-effector
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Figure 7: (a) Lower-RL-Upper-IK with Force Estimator; (b) Force Estimator Results: yellow lines
are the estimated forces while the red lines are the actual forces.

alter the effective Jacobian J ′T
EE , making the compensation term JT

EEF̃
ee

t inaccurate. Therefore,
a force sensor is still necessary during deployment to localize the force application and compute the
correct J ′T

EE . Moreover, the compensation assumes quasi-static conditions, introducing additional
error when upper-body joints are moving.

A.4 Force Measurement

Here, we use Mxmoonfree-Digital-500N-Force-Gauge to measure the peak forces needed for the
following force-adaptive tasks: (1) Cart-Pulling for Booster T1 with a Unitree G1 and a Unitree
H1 in the cart; (2) Door-Opening; (3) Stance-Pulling for the Unitree G1 and Booster T1.

Here, Stance-Pulling refers to applying longitudinal forces along the X-Y plane while the robot
maintains a static stance, and measuring the maximum force it can resist without losing balance.
Notably, the Booster T1 demonstrates a higher peak resistive force compared to the Booster T1, pri-
marily due to its lower center of mass (CoM), which contributes to better stability with longitudinal
resistance.

A.5 Autonomy Pipeline

Upper-body
Joint PD Targets

!!"

Upper-Body 
RL Agent

FoundationPose

!!#

Lower-Body 
RL Agent

!!"##$%
Grasping

Points

Lower-body
Joint PD Targets

Inverse 
Kinematics

!!"#$!!%$&

ℎ!'((! #!)%*
Pick/Drop Table Poses

Robot Poses
Motion Capture
System

Walk w/o tote Walk w/ tote

Pick up the tote in stance Drop off the tote in stance

Figure 9: Overview of the autonomy pipeline for FALCON. The system integrates FALCON with
6-DoF object pose estimation via FoundationPose, MoCap-based global localization, and inverse
kinematics for grasp planning to enable a humanoid robot to perform tote logistics tasks: walk
without a tote, pick up the tote, walk with the tote, and drop off the tote.

We develop an hierarchically autonomous pipeline for tote logistics, leveraging a Motion Capture
(MoCap) system to localize positions of the robot and desks. The robot is controlled by a state-
machine framework with four states: (1) walking without the tote, (2) picking up the tote in stance,
(3) walking with the tote, and (4) dropping off the tote in stance, as illustrated in Fig.9. To estimate
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(a) Cart-Pulling (peak: 107.9 N) (b) Door-Opening (peak: 47.3 N)

(c) Stance-Pulling: Unitree G1 (peak: 57.4 N) (d) Stance-Pulling: Booster T1 (peak: 66.3 N)

Figure 8: Maximum force readings captured during different force-adaptive tasks using a handheld
force gauge. Subfigures (a)–(d) show peak force values during individual tasks.

the tote’s pose relative to the camera, we use FoundationPose [41], a state-of-the-art method for
accurate and reliable 6-DoF pose estimation.

A.5.1 Perception - Pose Estimation

To set up the FoundationPose pipeline [41], we first acquire a high-fidelity 3D model of the industrial
tote by performing a raw 3D scan, followed by manual post-processing in a 3D modeling tool. The
resulting texture and .obj files serve as inputs to FoundationPose, enabling 6-DoF pose estimation
of the tote from the G1 robot’s image stream. Additionally, we predefine grasp points longitudinally
on the tote’s surfaces (Fig. 10), which are transformed into the robot base frame using the calibrated
extrinsics between the camera and the robot.

A.5.2 Motion Capture System

The motion capture system provides accurate 6-DoF pose estimates—position (x, y, z) and orienta-
tion (yaw, pitch, roll)—for the robot base, pickup table, and drop table in a global reference frame,
enabling consistent spatial localization across the system.
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Figure 10: Humanoid G1 Tote Logistics (a) First person view of tote pose estimation (grasping
points shown in red). (b) Sequence of actions from left to right- approach, grasp, pickup.

When the state machine transitions to “(2) Pick up the tote in stance” (see Fig. 9), triggered by mocap
feedback, FoundationPose is executed in real time to estimate the tote pose. The predefined grasp
points are then passed to an inverse kinematics (IK) solver, formulated as a go-to-pose problem for
the upper-body manipulation.

A.6 Hardware Limits in Real-World Deployment

During sim-to-real deployment of the policy trained with FALCON, we observe that the humanoid
robot struggles to sustain high joint torques over extended periods, often leading to rapid motor
overheating—particularly at the wrists, as shown in Figure 11 (a). This significantly limits our
ability to perform payload transport exceeding 2kg per arm at its default joint position. In contrast,
as shown in Figure 11 (b) and (c), the same policy evaluated in MuJoCo [47], with torque clipping to
respect joint limits but without modeling thermal constraints, successfully transports payloads over
3kg per end effector while accurately tracking the linear velocity commanded −1 m / s along the
x-axis. This highlights a key gap between simulated and real-world actuator endurance.

(b) (c)

2kg
4kg3kg

Out of wrist torque limits

(a)

2.8kg
2kg

Figure 11: Transporting 0-4kg Payloads in Mujoco

However, for heavy-duty tasks such as cart-pulling—which require only brief bursts of high
torque—the motors are less prone to overheating, as sustained high torque output is not necessary.
This enables the robot to successfully perform such tasks in the real world.
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